机器学习
文章平均质量分 50
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【独家原创】基于K均值聚类+KNN-LSTM-RF数据填补的时序数据清洗模型 Matlab代码
摘要:本文介绍了一种基于K均值聚类+KNN-LSTM-RF的多模型协同数据清洗Matlab代码。创新性地融合了四类异常检测方法(3σ、滑动窗口Z-score、IQR和一阶差分),通过组合策略将检测精度提升至94.3%。采用KNN(40%)+LSTM(30%)+RF(30%)的自适应加权填补架构,相比单一模型显著降低误差。代码具有距离度量自适应、动态优化聚类数等亮点,提供完整的数据质量视图和异常分析功能,适用于风电等时序数据的智能化清洗。代码附带测试数据集,中文注释清晰,支持Matlab 2020b及以上版本原创 2026-02-03 23:53:06 · 931 阅读 · 0 评论 -
基于SVM-Adaboost多变量回归预测+交叉验证 Matlab代码 (多输入单输出)
摘要:本文介绍了一个基于SVM-Adaboost算法的多变量回归预测Matlab程序。该程序采用5折交叉验证(可调整),输入特征包括膜面积、流速、浓度等参数,输出为单变量预测结果。程序已调试完成,支持Excel数据格式,附带测试数据集,可直接运行。主要特点包括:中文注释清晰、支持多种评价指标(R2、MAE等)、输出丰富图表,适用于2018b及以上版本Matlab环境。程序通过交叉验证有效抑制过拟合,适合初学者直接使用。原创 2026-02-02 23:55:22 · 212 阅读 · 0 评论 -
基于SSA-BP多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
摘要:本文介绍了一种基于麻雀搜索算法(SSA)优化BP神经网络并结合SHAP可解释性分析的多输入多输出回归预测模型。该模型通过SSA优化BP神经网络的参数,提高预测精度,并利用SHAP方法对模型决策过程进行可视化解释,实现预测性能与可解释性的统一。代码采用MATLAB编写,适用于2018b及以上版本,提供R2、MAE等多种评价指标和丰富可视化结果。数据集可直接替换使用,适合初学者快速上手。原创 2026-02-01 23:33:10 · 315 阅读 · 0 评论 -
基于LSSVM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
摘要:本文介绍了一种基于最小二乘支持向量机(LSSVM)和SHAP可解释性分析的多输入多输出回归预测模型。该模型结合机器学习的高预测精度与SHAP方法的可解释性优势,通过Shapley值量化各特征对预测结果的贡献,实现决策过程可视化。代码采用MATLAB编写(2018b及以上版本),包含R2、MAE等评价指标,附带测试数据集,用户只需替换Excel格式数据即可运行。该方案为复杂系统建模提供了兼具预测性能和解释能力的解决方案,特别适合需要模型可解释性的应用场景。原创 2026-02-01 23:32:23 · 307 阅读 · 0 评论 -
基于BP多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
摘要:本文介绍了一种基于BP神经网络结合SHAP可解释性分析的多输入多输出回归预测模型。该模型通过SHAP方法量化特征贡献,实现预测精度与解释能力的平衡。代码支持MATLAB 2018b及以上版本,包含R2、MAE等评价指标,提供中文注释和测试数据集,适用于新手直接使用。文章展示了代码运行结果,并提供了获取方式。该混合建模框架为复杂系统决策提供了有效的分析工具。原创 2026-02-01 00:12:32 · 535 阅读 · 0 评论 -
[独家原创]基于分位数回归PSO-QRLightGBM多变量回归-区间预测(多输入单输出) Matlab代码
本文介绍了一套基于分位数回归PSO-QRLightGBM的多变量回归区间预测Matlab代码。该代码采用Excel数据格式,实现多输入单输出的区间预测功能,包含变量重要性分析和误差曲线。程序已调试完成,用户可直接替换数据使用,并支持自定义算法调整。代码提供完整的中文注释,附带示例数据集,可输出包括PICP、PINAW等指标的预测结果图,且置信区间可调。文章最后提供了代码获取方式。原创 2026-02-01 00:10:41 · 535 阅读 · 0 评论 -
[原创基于CCO-LSSVM多输出回归+SHAP可解释性分析+NSGAII多目标优化算法的工艺参数优化 Matlab代码
本文介绍了一种基于杜鹃鲶鱼算法优化最小二乘向量机(CCO-LSSVM)的多输入多输出回归预测模型,结合SHAP可解释性分析。该模型通过NSGAII多目标优化算法寻找输出变量的极值并生成Pareto解集。代码采用MATLAB实现,包含完整的中文注释和测试数据集,支持直接替换数据使用。模型特点包括:1)利用SHAP方法提供模型决策的可解释性分析;2)采用CCO-LSSVM建立多输出代理模型;3)通过NSGAII实现多目标优化。运行环境要求MATLAB 2018b及以上版本,提供R2、MAE等多种评价指标和可视化原创 2026-01-15 23:32:24 · 503 阅读 · 0 评论 -
[原创]基于CCO-ELM多输出回归+SHAP可解释性分析+NSGAII多目标优化算法的工艺参数优化 Matlab代码
摘要:本文介绍了一种基于杜鹃鲶鱼算法优化极限学习机(CCO-ELM)的多输入多输出回归预测模型,结合SHAP可解释性分析和NSGAII多目标优化算法。该模型通过SHAP方法提供局部和全局特征解释,利用NSGAII算法寻找最优解集。代码采用MATLAB实现,包含两个主程序模块,支持直接替换Excel格式数据集运行。模型具有R2、MAE等多种评价指标,输出丰富可视化结果,适用于复杂系统的预测与解释需求,为机器学习模型的可解释性研究提供了有效解决方案。原创 2026-01-15 23:31:25 · 415 阅读 · 0 评论 -
[原创]基于ELM多输出回归+SHAP可解释性分析+NSGAII多目标优化算法的工艺参数优化 Matlab代码
摘要:本文介绍了一个基于ELM极限学习机和SHAP可解释性分析的多输入多输出回归预测模型。该模型通过ELM建立代理模型,结合SHAP进行特征贡献分析,实现高精度预测与决策解释的统一。同时采用NSGAII多目标优化算法寻找输出变量的极值解集。代码采用MATLAB编写,包含详细中文注释,支持多种评价指标,可直接替换Excel数据集使用。该方案适用于需要兼顾预测性能和模型可解释性的复杂系统建模场景,特别适合机器学习初学者使用。原创 2026-01-15 23:30:30 · 379 阅读 · 0 评论 -
[原创]基于CCO-LSSVM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
本文介绍了一种基于杜鹃鲶鱼算法优化最小二乘向量机(CCO-LSSVM)结合SHAP可解释性分析的多输入多输出回归预测模型。该模型通过SHAP方法量化特征贡献,实现预测精度与可解释性的统一。代码采用MATLAB编写(需2018b以上版本),包含中文注释,可直接替换Excel数据集使用,提供R2、MAE等多项评价指标及可视化结果。该创新方法将最新元启发式算法与可解释AI技术结合,为复杂系统建模提供了有效解决方案。原创 2026-01-15 23:29:20 · 331 阅读 · 0 评论 -
[原创]基于CCO-ELM多输出回归+SHAP可解释性分析 Matlab代码(多输入多输出)
本文介绍了一种基于杜鹃鲶鱼算法优化极限学习机(CCO-ELM)的多输入多输出回归预测模型,结合SHAP可解释性分析方法。该模型采用机器学习与SHAP的混合框架,在保持高预测精度的同时实现决策过程的可解释性。代码基于MATLAB 2018b及以上环境运行,提供R2、MAE等多种评价指标,附带测试数据集和中文注释,适合初学者使用。该创新方法将杜鹃鲶鱼优化算法与SHAP解释技术相结合,为复杂系统建模提供了新的解决方案。原创 2026-01-15 23:28:10 · 364 阅读 · 0 评论 -
基于ELM+SHAP可解释性分析的多输出回归预测 Matlab代码(多输入多输出)
本文介绍了一个基于ELM极限学习机和SHAP可解释性分析的多输入多输出回归预测模型。该模型结合机器学习与SHAP解释方法,在保持高预测精度的同时提供决策过程的可解释性。代码采用MATLAB编写,支持直接替换Excel数据集运行,包含R2、MAE等多种评价指标,并生成丰富可视化结果。该方案适用于需要模型解释性的复杂系统建模场景,为模型优化和决策提供支持。原创 2026-01-14 23:49:52 · 387 阅读 · 0 评论 -
基于贝叶斯算法优化Adaboost(BO-Adaboost/Bayes-Adaboost)数据分类预测 Matlab代码
本文介绍基于贝叶斯算法优化Adaboost(BO-Adaboost)的Matlab分类代码,适用于多输入单输出的数据分类预测。该程序已调试完成,可直接替换Excel数据集运行,支持二分类和多分类任务。运行环境要求MATLAB 2018b及以上版本,代码包含详细中文注释。结果展示包括分类效果图、迭代优化图和混淆矩阵图。用户可通过文末链接获取完整代码。原创 2026-01-13 23:31:47 · 56 阅读 · 0 评论 -
基于贝叶斯算法优化BP神经网络(BO-BP/Bayes-BP)的数据分类预测 Matlab代码
摘要:本文介绍了基于贝叶斯算法优化BP神经网络(BO-BP/Bayes-BP)的Matlab分类预测代码。该代码适用于多输入单输出的数据分类任务,通过贝叶斯优化自动调整隐藏层神经元数量和学习率。程序已调试完成,支持Excel格式数据输入,兼容MATLAB 2018b及以上版本,可实现二分类和多分类任务。运行结果包含分类效果图、迭代优化曲线和混淆矩阵等可视化图表。代码提供详细中文注释,用户可直接替换数据集使用。原创 2026-01-13 23:31:06 · 65 阅读 · 0 评论 -
Matlab 基于Bayes-Adaboost可解释性分析的分类预测
摘要:本文介绍了一种基于贝叶斯算法优化Adaboost的分类预测模型,结合SHAP可解释性分析方法。该模型针对多输入单输出数据,提供了两种SHAP计算版本(正常版和提速版)以适应不同需求。程序采用MATLAB 2020b及以上版本运行,支持二分类和多分类任务,包含完整中文注释。运行结果可视化展示分类效果、迭代优化过程和混淆矩阵分析。该混合建模框架实现了预测精度与解释能力的平衡,通过SHAP值量化特征贡献,为模型决策提供直观解释。配套测试数据集可直接运行,适合机器学习初学者使用。原创 2026-01-13 23:30:27 · 342 阅读 · 0 评论 -
Matlab 基于Bayes-RF可解释性分析的分类预测
摘要:本文介绍了一种基于贝叶斯优化随机森林(Bayes-RF)的分类预测模型,结合SHAP可解释性分析方法。该模型针对SHAP分析速度慢的问题,提供了正常版和提速版两种计算方案。程序采用MATLAB2020b及以上版本运行,支持二分类和多分类任务,包含分类效果图、迭代优化图和混淆矩阵图等可视化结果。模型通过SHAP值量化特征贡献,将博弈论概念应用于机器学习解释,实现了预测精度与可解释性的统一。代码提供完整中文注释和测试数据集,适合初学者使用。原创 2026-01-13 23:29:21 · 297 阅读 · 0 评论 -
Matlab 基于Bayes-BP可解释性分析的分类预测
摘要:本文介绍了一种基于贝叶斯算法优化BP神经网络并结合SHAP可解释性分析的分类预测模型(Bayes-BP+SHAP)。该模型解决了复杂机器学习模型的可解释性问题,通过SHAP方法量化各特征对预测结果的贡献。程序提供两种SHAP计算版本(常规版和提速版),并附带详细使用说明。模型支持二分类和多分类任务,运行环境要求MATLAB 2020b及以上版本,包含分类效果图、迭代优化图和混淆矩阵等可视化结果。代码注释清晰,附带测试数据集,便于直接运行和使用。原创 2026-01-13 23:28:11 · 307 阅读 · 0 评论 -
基于KRR核岭回归(Kernel Ridge Regression)多变量回归预测 (多输入单输出) Matlab回归
摘要:本文介绍基于KRR核岭回归的Matlab多变量回归预测程序,适用于多输入单输出场景。程序支持rbf、linear、poly等核函数切换,已调试完成可直接运行。采用FO工艺数据库,输入特征包括膜面积、流速、浓度等参数。KRR相比岭回归具有非线性拟合能力强、高维正则化效果好、模型灵活等优势。程序要求MATLAB 2018b以上版本,提供R2、MAE等多种评价指标及可视化结果,包含中文注释和测试数据集,适合新手使用。原创 2026-01-13 00:10:21 · 808 阅读 · 0 评论 -
基于(SVM-RFE-BP)支持向量机递归特征消除特征选择算法结合BP神经网络多变量回归预测(多输入单输出)
摘要:该程序采用SVM-RFE-BP算法实现多变量回归预测,通过支持向量机递归特征消除进行特征选择后,结合BP神经网络进行预测。更新后采用6+6可视化模式展示结果(6个误差分析图+6个统计分布图),并附带详细解释文档。程序已调试完成,支持Excel格式数据,适用于FO工艺数据库分析(输入特征包括膜面积、流速等参数)。运行环境需MATLAB 2018b及以上版本,提供R2、MAE等多种评价指标。代码注释清晰,附带测试数据集,适合新手直接使用。原创 2026-01-07 23:38:02 · 168 阅读 · 0 评论 -
(加交叉验证)基于GPR的数据多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于高斯过程回归(GPR)的多变量回归预测MATLAB程序,适用于多输入单输出数据建模。程序采用5折交叉验证(可调),使用FO工艺数据库(膜面积、流速、浓度等特征),输出R2、MAE等多项评估指标,并自动生成可视化结果图。代码已调试完成,附带测试数据集,支持Excel格式数据直接替换使用。运行环境要求MATLAB 2018b及以上版本,代码含中文注释,适合初学者快速上手应用。原创 2026-01-07 23:36:09 · 213 阅读 · 0 评论 -
Matlab 基于蚁群算法优化高斯过程回归(ACO-GPR)的数据多变量回归预测+交叉验证 (多输入单输出)
摘要:该Matlab程序基于蚁群算法优化高斯过程回归(ACO-GPR),实现多变量回归预测并采用5折交叉验证(可调)。程序支持多输入单输出,评价指标包括RMSE、R2等7项,可有效抑制过拟合。代码已调试完成,替换Excel数据集即可运行,适用于Matlab2018b及以上版本。程序提供中文注释和测试数据集,适合新手使用。运行结果可视化展示丰富,还可根据需求定制其他优化算法。原创 2026-01-07 23:34:11 · 254 阅读 · 0 评论 -
Matlab 基于蜣螂算法优化高斯过程回归(DBO-GPR)的数据多变量回归预测+交叉验证 (多输入单输出)
摘要:Matlab基于蜣螂算法优化高斯过程回归(DBO-GPR)实现多变量回归预测,支持5折交叉验证(可调),有效抑制过拟合。程序已调试完成,可直接替换Excel数据集运行。评价指标包含RMSE、R2等7项,支持定制其他优化算法。运行环境要求MATLAB2018b及以上,代码含中文注释,附赠测试数据集,适合新手使用。原创 2026-01-07 23:31:32 · 223 阅读 · 0 评论 -
基于贝叶斯算法优化BP神经网络(BO-BP/Bayes-BP)的数据单变量时序预测 Matlab
摘要:本文提供基于贝叶斯算法优化BP神经网络的单变量时序预测Matlab代码,适用于电力数据预测。程序已调试完成,可直接替换Excel数据集运行,优化参数为隐藏层神经元个数和学习率。运行环境要求MATLAB 2018b及以上版本,提供R2、MAE、MSE等多种评价指标及可视化结果。代码含中文注释,附带测试数据集,适合新手使用。获取方式详见文末。原创 2026-01-07 23:27:06 · 230 阅读 · 0 评论 -
(加交叉验证)基于XGBoost的数据多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于XGBoost的多变量回归预测程序,适用于多输入单输出的数据建模。该程序采用5折交叉验证(可调),支持Excel格式数据输入,特征包括膜面积、流速等工艺参数。程序已在MATLAB 2018b及以上环境调试完成,提供R2、MAE等多种评价指标和可视化结果。代码包含中文注释,附带测试数据集,用户只需替换数据即可使用,适合初学者。运行结果展示和代码获取方式详见正文。原创 2025-12-29 22:48:45 · 593 阅读 · 0 评论 -
基于CNN-DELM单变量时序预测 Matlab
摘要:本文介绍了一个基于CNN-DELM混合模型的单变量时序预测Matlab程序,采用12种可视化方式(6种误差分析+6种统计分布)展示结果。代码已调试完善,支持Excel格式电力数据,包含R2、MAE等评价指标,附带详细中文注释和测试数据集。适用于Matlab 2021b及以上环境,提供完整运行指南和结果展示,适合初学者直接使用。(99字)原创 2025-12-26 23:47:31 · 294 阅读 · 0 评论 -
基于CNN-DELM多变量时序预测 Matlab
基于CNN-DELM模型的时序预测Matlab代码 摘要:本文提供了一套基于卷积神经网络(CNN)和深度极限学习机(DELM)的多变量时序预测Matlab代码。该代码具有以下特点:1) 采用6+6可视化模式(6个误差分析图+6个统计分布图);2) 附带详细Word说明文档;3) 包含完整中文注释,适合新手使用;4) 提供测试数据集,用户只需替换数据即可运行;5) 要求Matlab 2021b及以上版本(可提供)。代码已调试完成,支持R2、MAE、MSE等多种评价指标,实现了"开箱即用"的原创 2025-12-26 23:46:49 · 149 阅读 · 0 评论 -
Matlab 基于(BiLSTM-GPR)双向长短期记忆神经网络结合高斯过程回归的多变量回归预测
摘要:本文介绍了一种基于BiLSTM-GPR(双向长短期记忆神经网络结合高斯过程回归)的多变量回归预测MATLAB程序。该程序支持多输入单输出,具有即用性(替换Excel数据集即可运行)、完善的评价指标(RMSE、R2等7项)和可视化功能。程序要求MATLAB 2018b及以上版本,提供中文注释和测试数据集,适合科研人员直接应用或作为算法优化基础。文中展示了运行效果并提供了获取方式。原创 2025-12-22 22:51:48 · 307 阅读 · 0 评论 -
DBO-KELM-Adaboost回归 基于蜣螂算法优化核极限学习机-Adaboost多变量回归预测+交叉验证
摘要:该程序提供了基于蜣螂算法(DBO)优化核极限学习机(KELM)与Adaboost集成的多变量回归预测解决方案。程序支持5-10折交叉验证,输入为多变量Excel数据(如膜面积、流速等工艺参数),输出单变量预测结果。MATLAB 2019b及以上版本运行,包含R2、MAE等评估指标和可视化图表。代码已调试完成,用户只需替换数据即可使用,适合科研预测建模场景。程序提供中文注释和测试数据集,支持更换其他优化算法定制服务。原创 2025-11-18 00:10:39 · 337 阅读 · 0 评论 -
NRBO-KELM-Adaboost回归 基于牛顿拉夫逊算法优化核极限学习机-Adaboost多变量回归预测+交叉验证
摘要:本文介绍了一种基于NRBO-KELM-Adaboost的多变量回归预测方法,该方法通过牛顿拉夫逊算法优化核极限学习机,并采用Adaboost集成模型。程序已调试完成,可直接替换Excel格式数据使用,支持1-10折交叉验证。该方法创新性地结合NRBO优化算法(2024年发表SCI论文)与集成学习,适用于多输入单输出预测场景。配套代码具备完整中文注释,支持MATLAB 2019b及以上版本,提供R2、MAE等多种评价指标可视化结果,并附带测试数据集,适合不同水平的研究人员直接应用。(140字)原创 2025-11-18 00:09:50 · 345 阅读 · 0 评论 -
CCO-KELM-Adaboost回归 基于杜鹃鲶鱼算法优化核极限学习机-Adaboost多变量回归预测+交叉验证
摘要:该MATLAB程序基于杜鹃鲷鱼算法(CCO)优化核极限学习机(KELM)结合Adaboost集成,实现多变量回归预测。程序已调试完成,支持excel数据格式输入和5-10折交叉验证,提供R2、MAE等多维评估指标。创新性地采用CCO先优化KELM作为弱学习器,再通过Adaboost进行集成提升。该方案适用于MATLAB2019b及以上版本,包含详细中文注释和测试数据集,支持算法定制替换,适合科研人员直接使用。原创 2025-11-18 00:08:54 · 184 阅读 · 0 评论 -
[24年算法]基于BKA-LightGBM+SHAP可解释性分析的分类预测 Matlab代码
摘要:本文介绍了一种基于黑翅鸢算法(BKA)优化的LightGBM回归预测模型,结合SHAP可解释性分析方法。针对传统SHAP分析速度慢的问题,提供了两种计算版本(正常版和提速版)。该模型具有以下特点:1)采用新型BKA优化算法(2024年发表);2)支持多输入单输出回归预测;3)提供全面的可解释性分析;4)配套详细使用说明和测试数据集。运行要求MATLAB 2023b及以上版本,适合各水平用户,特别适合需要模型解释性的应用场景。原创 2025-11-12 22:32:06 · 415 阅读 · 0 评论 -
基于LightGBM+SHAP可解释性分析的分类预测 Matlab代码
本文介绍了一个基于LightGBM和SHAP的可解释性回归预测模型。该模型采用轻量级梯度提升算法实现数据多输入单输出预测,并配备两种SHAP计算版本(正常版和提速版)进行结果解释。SHAP方法基于博弈论原理,能定量分析各特征对预测结果的贡献度,实现模型决策过程的可视化解析。代码支持MATLAB 2023b及以上版本,提供清晰中文注释,包含分类效果图、优化迭代图和混淆矩阵等可视化结果,附带测试数据集可直接运行。该方案平衡了预测精度与模型可解释性,适用于需要决策支持的复杂系统建模场景。原创 2025-11-12 22:31:10 · 527 阅读 · 0 评论 -
多输入单输出回归预测全家桶!劲爆更新!
多输入单输出回归预测全家桶!尽请关注!不断更新中!!!注:Matlab版本推荐2023b以及以上,即可全部胜任(各个程序所需版本不同)关注好,不定时更新哦 !!!首次更新就是王炸,直接带来61款回归预测模型!原创 2025-11-08 20:55:23 · 928 阅读 · 0 评论 -
多输入单输出分类预测全家桶!震撼来袭!!!
【摘要】本文介绍了一套全面的Matlab分类预测代码集,包含50种多输入单输出分类模型。该代码集涵盖30种基础分类模型、7种优化模型、9种组合模型以及2种可解释分析模型,支持二分类和多分类任务。代码要求Matlab 2023b及以上版本运行,提供中文注释、测试数据集和多种可视化结果(分类效果图、迭代优化图、混淆矩阵等)。购买多个代码可享优惠,适合新手学习使用。原创 2025-11-06 23:23:22 · 1047 阅读 · 0 评论 -
[创新原创]CEEMDAN-RRTO-ELM-ABKDE多变量回归预测 (多输入单输出) Matlab代码
摘要:本文介绍一种基于CEEMDAN-RRTO-ELM-ABKDE的多变量回归预测方法。该方法首先通过CEEMDAN分解数据,再使用冠豪猪优化算法(CPO)优化极限学习机(ELM)进行点预测,最后结合自适应带宽核密度估计进行区间概率预测。Matlab代码可直接运行,支持多输入单输出预测,并提供R2、MAE等评价指标及区间覆盖率分析。研究成果已发表在2025年《IEEE Access》,代码附带详细注释和示例数据集,便于使用。原创 2025-11-03 23:32:03 · 1151 阅读 · 0 评论 -
【原创】基于KEO-XGBoost+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)+交叉验证
摘要:本文介绍了一种基于袋鼠逃生优化算法(KEO)优化的XGBoost回归预测模型,结合SHAP可解释性分析,适用于多输入单输出的数据预测。该模型采用5折交叉验证,支持1-10折调整,能够有效平衡预测精度与可解释性。代码使用FO工艺数据库,输入特征包括膜面积、流速、浓度等参数,支持excel格式数据直接替换运行。算法创新性地结合了混沌Logistic自适应策略,性能优越。运行环境要求MATLAB2020b以上,提供R2、MAE等多个评价指标及可视化结果,注释清晰,适合科研使用。原创 2025-10-26 23:24:04 · 391 阅读 · 0 评论 -
【原创】基于KEO-RF+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
《基于KEO-RF+SHAP的智能预测模型》 摘要:该研究提出了一种结合袋鼠逃生优化算法(KEO)与随机森林(RF)的回归预测模型,并引入SHAP可解释性分析方法。模型采用FO工艺数据库,输入特征包括膜面积、流速和浓度等参数。通过混沌Logistic能量自适应策略优化算法性能,在保证预测精度的同时,利用SHAP值量化各特征贡献度,实现决策过程可视化。实验结果表明,该方法在R2、MAE等指标上表现优异,为复杂系统建模提供了兼具预测能力和解释性的解决方案。代码兼容MATLAB2020b及以上版本,附带完整测试数原创 2025-10-26 23:22:36 · 401 阅读 · 0 评论 -
【原创】基于CCO-RF+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)
摘要:该研究提出基于杜鹃鲶鱼优化算法(CCO-RF)结合SHAP可解释性分析的回归预测模型,适用于多输入单输出数据预测。算法采用随机森林架构,通过CCO优化提升性能,并利用SHAP方法实现模型决策过程的可视化解释。代码兼容Excel格式数据,支持多种评价指标(R2、MAE等),适用于MATLAB2020b及以上环境。研究成果发表于2025年SCI一区期刊,具有创新性和实用性,特别适合复杂系统建模需求。原创 2025-10-26 23:21:29 · 358 阅读 · 0 评论 -
【原创】基于GS-RF+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)+交叉验证
摘要:本文介绍了一个基于GS-RF+SHAP的多输入单输出回归预测模型,该模型采用网格搜索优化随机森林算法,结合SHAP可解释性分析方法。模型支持1-10折交叉验证,默认5折。代码采用MATLAB2020b及以上版本开发,包含R2、MAE、MSE等评价指标,配备中文注释和测试数据集。SHAP方法基于博弈论,能有效量化特征贡献,平衡模型精度与可解释性。该框架适用于FO工艺数据库等复杂系统建模,用户可直接替换Excel格式数据使用。原创 2025-10-26 23:20:20 · 248 阅读 · 0 评论 -
【原创】基于NRBO-LSSVM+SHAP可解释性分析的回归预测 Matlab代码(多输入单输出)+交叉验证
本文介绍了一种基于牛顿拉夫逊算法优化最小二乘向量机(NRBO-LSSVM)结合SHAP可解释性分析的数据回归预测模型。该模型采用5折交叉验证(可调1-10折),适用于多输入单输出的数据预测。代码采用MATLAB编写(2020b及以上版本),包含R2、MAE等评价指标和丰富可视化结果。模型特点包括:1)通过SHAP分析实现模型可解释性;2)采用牛顿-拉夫逊优化算法提升性能;3)支持直接替换Excel数据集使用。代码附带详细中文注释和测试数据集,适合科研人员使用。原创 2025-10-26 23:19:03 · 286 阅读 · 0 评论
分享