一键对比
文章平均质量分 59
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-BiGRU6模型单变量时序预测一键对比
摘要:本文介绍了一种基于Matlab的6模型单变量时序预测对比方案,采用CEEMDAN-CPO-VMD-PLO-Transformer-BiGRU双优化模型,包含一键对比功能。方案通过CEEMDAN分解和CPO-VMD二次分解处理高频分量,结合Transformer编码器和BiGRU进行预测。代码已调试完成,支持电力数据格式,提供R2、MAE等多项评价指标。运行环境要求MATLAB 2023b及以上版本,包含中文注释和测试数据集,适合初学者使用。原创 2025-12-29 23:02:21 · 262 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-GRU6模型单变量时序预测一键对比
本文提出一种基于CEEMDAN-CPO-VMD-PLO-Transformer-GRU六模型对比的单变量时序预测方法。该方法通过CEEMDAN分解和样本熵聚类,采用CPO优化VMD参数进行二次分解,结合Transformer编码器和GRU网络进行预测。代码包含VMD-Transformer-GRU等多个对比模型,一键运行即可获得R2、MAE等评价指标。程序已调试完成,支持直接替换Excel数据集使用,特别适合时序预测研究。运行环境要求MATLAB 2023b及以上版本,代码包含详细中文注释和测试数据。原创 2025-12-29 22:57:12 · 357 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-BiLSTM6模型单变量时序预测一键对比
本文介绍了一种基于Matlab的多模型单变量时序预测方法。该方法整合了CEEMDAN-CPO-VMD-PLO-Transformer-BiLSTM等6种模型,通过一键运行即可实现对比分析。系统采用CEEMDAN分解和样本熵聚类,利用CPO优化VMD参数,结合Transformer编码器挖掘时序特征,最后通过BiLSTM进行预测。该方案支持多输入单输出模式,提供R2、MAE等多项评价指标,附带完整测试数据集和详细中文注释,适合MATLAB 2023b及以上环境运行。代码已调试完成,用户只需替换数据即可使用,特原创 2025-12-29 22:56:00 · 351 阅读 · 0 评论 -
Matlab CEEMDAN-CPO-VMD-PLO-Transformer-LSTM6模型单变量时序预测一键对比
本文提出了一种基于CEEMDAN-CPO-VMD-PLO-Transformer-LSTM(双优化)的6模型单变量时序预测方法,可实现一键对比分析。该方法首先通过CEEMDAN分解和样本熵聚类,采用CPO优化VMD参数对高频分量二次分解,再将分解结果与Transformer-LSTM模型结合预测。代码包含VMD-Transformer-LSTM等6种模型对比,支持多输入单输出预测,评价指标完善。程序已调试完成,用户只需替换数据集即可运行,适合电力数据等单变量时序预测任务,预测精度较高。运行环境需MATLAB原创 2025-12-29 22:50:33 · 546 阅读 · 0 评论 -
【消融实验】基于CCO-CNN-BiGRU-Attention 6 模型多变量时序预测一键对比(多输出单输出)
摘要:本文提供基于CCO-CNN-BiGRU-Attention等6种模型的单变量时序预测Matlab代码合集,可实现一键运行对比分析。代码采用电力数据格式(excel),通过运行main函数即可自动生成各模型预测结果和对比图表。核心特点包括:支持CCO算法优化参数(隐藏层节点数、学习率等);包含R2、MAE等多项评价指标;提供完整中文注释和测试数据集。该代码适配MATLAB 2020b及以上版本,适合科研人员快速实现时序预测模型的性能对比研究。注:CCO算法为2025年SCI一区期刊发表的新优化方法。原创 2025-11-03 22:55:18 · 289 阅读 · 0 评论 -
【消融实验】基于CCO-CNN-GRU-Attention 6 模型多变量时序预测一键对比(多输出单输出)
本文介绍了一套基于多种深度学习模型的单变量时序预测Matlab代码,包含CCO-CNN-GRU-Attention等6种模型的一键对比功能。代码特点包括:仅需运行main函数即可自动生成预测结果和对比图表;采用电力数据格式但支持自定义数据集;整合了新颖的杜鹃鲶鱼优化算法(CCO)进行参数优化;提供R2、MAE、MSE等多项评价指标。该代码适用于MATLAB2020b及以上版本,具有详尽中文注释和测试数据集,支持定制其他优化算法,特别适合时序预测研究和工程应用。原创 2025-11-03 22:53:42 · 302 阅读 · 0 评论 -
【消融实验】基于CCO-CNN-BiLSTM-Attention 6 模型多变量时序预测一键对比(多输出单输出)
本文介绍一款基于MATLAB的多模型单变量时序预测对比工具包,包含CCO-CNN-BiLSTM-Attention等6种先进模型的一键对比功能。该工具包采用电力数据格式(Excel),用户只需运行main函数即可自动生成R2、MAE等评估指标和各类可视化结果。核心创新点在于集成最新的杜鹃鲶鱼优化算法(CCO)进行超参数优化,并支持其他算法的定制扩展。代码提供详细中文注释和测试数据集,适配MATLAB2020b及以上版本,特别适合科研人员和初学者快速开展时序预测研究。原创成果,可提供CCO原文献参考。原创 2025-11-03 22:52:35 · 300 阅读 · 0 评论 -
【消融实验】基于CCO-CNN-LSTM-Attention 6 模型多变量时序预测一键对比(多输出单输出)
【摘要】本文提供一套基于Matlab的多模型时序预测对比工具包,包含CCO-CNN-LSTM-Attention等6种算法的一键式解决方案。特色包括:1)仅需运行main函数即可自动输出全部结果图表;2)支持电力数据Excel格式直接替换;3)采用最新杜鹃鲶鱼优化算法(CCO)进行参数优化;4)提供R2、MAE等完整评估指标。代码兼容MATLAB2020b+环境,附带中文注释和测试数据集,适合科研人员快速实现单变量时序预测的算法对比。该工具包已通过SCI一区验证,并可定制其他优化算法。原创 2025-11-03 22:51:24 · 539 阅读 · 0 评论 -
【消融实验】CEEMDAN-VMD-Transformer-BiGRU四模型单变量时序预测一键对比
摘要:该Matlab程序提供了一种基于CEEMDAN-VMD-Transformer-BiGRU双重分解模型的单变量时序预测解决方案。程序包含四种模型一键对比功能,只需运行main文件即可完成预测分析。支持电力数据等Excel格式输入,输出包括R2、MAE等多项评价指标及丰富可视化结果。程序已调试完善,附带中文注释和测试数据集,适合2023b及以上MATLAB版本使用,特别适合科研人员和初学者进行时序预测研究。原创 2025-10-29 23:50:16 · 320 阅读 · 0 评论 -
【消融实验】CEEMDAN-VMD-Transformer-GRU四模型单变量时序预测一键对比
摘要: 该Matlab代码实现了基于CEEMDAN-VMD-Transformer-GRU等多模型组合的单变量时序预测对比分析。通过双重分解(CEEMDAN+VMD)结合Transformer-GRU等4种模型,提供一键式对比功能。程序兼容电力数据格式(excel),包含R2、MAE等多项评估指标,并自动生成多幅结果图形。代码已调试完成,附带详细中文注释和测试数据集,支持MATLAB 2023b及以上版本运行。用户只需替换数据即可直接使用,适合不同水平的研究人员。原创 2025-10-29 23:48:48 · 191 阅读 · 0 评论 -
【消融实验】CEEMDAN-VMD-Transformer-BiLSTM四模型单变量时序预测一键对比
本文介绍了一种基于双重分解的Matlab单变量时序预测模型对比方法。该方法整合CEEMDAN-VMD-Transformer-BiLSTM等4种模型,通过一键运行实现对比分析。代码操作简便,只需替换数据集即可使用,适合电力数据等单变量时序预测。运行环境要求MATLAB2023b以上版本,提供完整测试数据集。评价指标全面,包括R2、MAE等多项指标,并附有详细中文注释。代码质量高,包含分解过程和模型对比的可视化结果展示,适合研究人员直接应用。原创 2025-10-29 23:47:51 · 305 阅读 · 0 评论 -
【消融实验】CEEMDAN-VMD-Transformer-LSTM四模型单变量时序预测一键对比
摘要:该Matlab代码提供了一种基于CEEMDAN-VMD-Transformer-LSTM等4种模型组合的单变量时序预测对比方案。程序采用双重分解技术,只需运行main1和main2即可完成VMD分解及四模型一键对比。代码以电力数据为例,支持Excel格式输入,输出R2、MAE等多种评价指标及可视化结果。程序已调试完成,中文注释清晰,适合MATLAB 2023b及以上环境运行,并附带测试数据集供初学者直接使用。原创 2025-10-29 23:46:34 · 323 阅读 · 0 评论 -
Matlab Transformer-BiLSTM 3模型单变量时序预测一键对比 (单输入单输出)
摘要:本文介绍了一套基于Transformer-BiLSTM、Transformer和BiLSTM三种模型的单变量时序预测Matlab代码。该代码采用电力数据进行测试,支持一键运行对比三种模型性能。代码包含详细中文注释,提供多种评估指标(R2、MAE、MSE等)和可视化图表,适合新手使用。运行环境要求MATLAB 2023b及以上版本,数据格式为Excel,测试数据集随代码赠送。用户只需替换数据集即可应用于光伏功率、负荷预测等场景。原创 2025-10-27 23:11:24 · 208 阅读 · 0 评论 -
Matlab Transformer-LSTM 3模型单变量时序预测一键对比 (单输入单输出)
【摘要】本文介绍了一套基于Transformer-LSTM、Transformer和LSTM模型的单变量时序预测Matlab代码。该代码采用电力数据进行测试,具有一键运行功能(仅需执行main程序)。代码支持Excel格式数据输入,通过Transformer编码器挖掘时序数据中的复杂特征关系。系统提供R2、MAE、MSE等多项评价指标和丰富图表输出,中文注释清晰,适合新手使用。运行环境要求MATLAB 2023b及以上版本,并附带测试数据集。用户可轻松替换自有数据进行预测分析。原创 2025-10-27 23:10:27 · 447 阅读 · 0 评论 -
BKA-CNN-BiGRU/CNN-BiGRU/BiGRU三模型多特征分类预测一键对比 Matlab代码
【摘要】该研究提供基于BKA-CNN-BiGRU、CNN-BiGRU和BiGRU三种模型的时序预测对比Matlab代码包,采用黑翅鸢优化算法(BKA)优化CNN-BiGRU模型。代码已调试完成,支持一键运行,包含原创未发表算法(BKA)和完整测试数据集,输出多模型预测对比结果及可视化图表(分类效果图、混淆矩阵等)。运行要求MATLAB2023b及以上版本,代码注释清晰,适合科研人员快速实现算法对比。该优化算法2024年3月发表于SCI顶级期刊,具有较高创新性。原创 2025-10-23 23:29:57 · 219 阅读 · 0 评论 -
[独家]LightGBM+BKA-Transformer-BiLSTM四模型多变量回归预测一键对比 (多输入单输出)
摘要:本文介绍了一种基于LightGBM+BKA优化Transformer-BiLSTM的多变量回归预测Matlab代码,适用于共享电车租赁数据预测。该方案通过LightGBM特征选择、BKA算法超参数优化(隐藏层节点数、正则化系数等)提升模型性能,包含四种模型对比。代码支持UCI数据集格式,已调试可直接运行,输出R2、MAE等多项评估指标。创新地采用2024年新发表的BKA优化算法,配套提供算法文献和测试数据集。运行环境需MATLAB 2023b及以上版本,代码注释完善,适合科研新手使用。(149字)原创 2025-09-18 23:37:25 · 428 阅读 · 0 评论 -
Matlab代码 基于CPO-CNN-BiGRU-Attention四模型回归预测一键对比(多输出单输出)
【摘要】该代码提供基于CPO-CNN-BiGRU-Attention等四种模型的多变量回归预测一键对比方案,包含原创未发表的Matlab代码。主要特点:1)仅需运行main函数即可一键生成所有结果图像;2)支持直接替换Excel格式数据集;3)采用2024年新算法CPO(冠豪猪优化器)优化参数,该算法已发表于中科院1区SCI期刊;4)包含R2、MAE等多项评价指标,输出丰富图表结果;5)代码注释清晰,兼容MATLAB 2020b及以上版本,附带测试数据集。支持算法定制和CPO原文献获取。原创 2025-09-09 23:08:02 · 447 阅读 · 0 评论 -
Matlab代码 基于CPO-CNN-GRU-Attention四模型回归预测一键对比(多输出单输出)
【摘要】本文介绍了一套基于CPO-CNN-GRU-Attention等四种模型的多变量回归预测Matlab代码,实现一键对比预测功能。代码特点包括:单main文件运行即可输出所有结果图像;支持excel数据格式;采用2024年新算法CPO优化隐藏层节点数等参数;兼容其他优化算法替换。代码已在MATLAB2020b+环境调试完成,包含中文注释和测试数据集,评价指标全面,特别适合科研预测需求。该CPO算法已发表于中科院1区SCI期刊,具有较强性能优势。原创 2025-09-03 23:18:12 · 278 阅读 · 0 评论 -
Matlab代码 基于CPO-CNN-BiLSTM-Attention四模型回归预测一键对比(多输出单输出)
【摘要】该代码提供基于CPO-CNN-BiLSTM-Attention等四种模型的多变量回归预测一键对比方案,仅需运行main函数即可自动生成所有结果图表。采用2024年新提出的冠豪猪优化器(CPO)进行参数优化,已在SCI一区期刊发表。代码支持MATLAB2020b及以上版本,内置中文注释和测试数据集,评价指标完整(R2、MAE等),可直接替换Excel数据使用。特色包括:一键出图、调试完备、支持算法定制,适合科研人员快速实现多模型对比预测。原创 2025-09-03 23:15:28 · 401 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-GRU-Attention 4 模型多变量时序预测一键对比(多输出单输出)
【摘要】本文提供了一款基于Matlab的多元时序预测组合模型代码,集成GWO-CNN-GRU-Attention等4种先进算法,适用于光伏/风电功率预测。该程序具有一键运行(main文件直接输出所有结果)、数据即换即用(excel格式)、参数自动优化(隐藏层节点/学习率等)等特点。代码包含中文注释,支持R2/MAE等多项评价指标,并附带测试数据集,2020b及以上版本Matlab即可运行,特别适合科研人员快速实现多模型对比预测。原创 2025-08-20 23:25:46 · 294 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-BiGRU-Attention 4 模型多变量时序预测一键对比(多输出单输出)
【摘要】本文提供基于GWO-CNN-BiGRU-Attention等4种模型的多变量时序预测Matlab代码,支持光伏/风电功率预测。代码特点:1)一键运行main函数即可生成所有结果对比图;2)支持Excel格式数据,无需修改代码;3)包含GWO优化隐藏层节点、学习率等参数功能;4)提供MAE、R2等多项评价指标及可视化结果。适用于Matlab2020b及以上版本,附带测试数据集和中文注释,新手友好。可定制其他算法模型,满足不同预测需求。原创 2025-08-20 23:06:42 · 304 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-BiGRU-Attention 6 模型多变量时序预测一键对比(多输出单输出)
摘要:本文介绍了一套基于Matlab的多变量时序预测模型对比系统,包含GWO-CNN-BiGRU-Attention等6种模型组合。该代码具有一键运行功能,支持光伏/风电功率预测,采用北半球光伏数据格式(Excel),通过GWO算法优化隐藏层节点等参数。系统提供R2、MAE等多种评价指标,输出丰富可视化结果,适用于2020b及以上Matlab版本。代码注释清晰,附带测试数据集,便于用户快速替换数据使用。原创 2025-08-17 23:53:59 · 137 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-BiLSTM-Attention 4 模型多变量时序预测一键对比(多输出单输出)
本文介绍了一套基于Matlab的多变量时序预测模型对比系统,包含GWO-CNN-BiLSTM-Attention等4种组合模型。其特点包括:一键运行main函数即可生成所有对比结果和图像;支持Excel格式数据输入,无需修改代码即可替换数据集;采用GWO算法优化关键参数。系统提供R2、MAE等多项评价指标,适用于光伏、风电功率预测等场景。代码要求MATLAB 2020b及以上版本,包含中文注释和测试数据集,适合科研人员及初学者使用。原创 2025-08-17 23:15:58 · 279 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-LSTM-Attention 4 模型多变量时序预测一键对比(多输出单输出)
摘要:本文提供了一套基于GWO-CNN-LSTM-Attention等4种模型的多变量时序预测Matlab代码,支持一键运行对比分析。该程序适用于光伏、风电功率预测,只需运行main函数即可自动生成所有预测结果和对比图表。代码采用GWO优化关键参数,支持Excel格式数据输入,无需修改代码即可替换数据集。程序包含R2、MAE等多项评价指标,输出丰富可视化结果。代码注释清晰,附带测试数据集,适合MATLAB 2020b及以上版本使用,对新手友好。(150字)原创 2025-08-17 23:14:18 · 303 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-GRU-Attention 6 模型多变量时序预测一键对比(多输出单输出)
本文介绍了一个基于多种深度学习模型(GWO-CNN-GRU-Attention等6种)的多变量时序预测Matlab代码。该代码操作简便,只需运行一个main文件即可完成所有模型预测和对比,适用于光伏、风电等预测任务。代码特点包括:支持多种评价指标(R2、MAE等)、中文注释清晰、提供测试数据集、可定制其他算法。运行环境要求MATLAB2020b及以上版本,数据格式为excel,可直接替换用户数据使用,特别适合科研和工程应用。原创 2025-08-17 23:13:23 · 185 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-BiLSTM-Attention 6 模型多变量时序预测一键对比(多输出单输出)
本文介绍了一套基于Matlab的多变量时序预测代码,包含GWO-CNN-BiLSTM-Attention等6种模型的一键对比功能。该代码适用于光伏、风电功率预测,只需运行main程序即可自动生成所有模型的预测结果和对比图表。特色包括:直接替换Excel数据集即可使用、GWO优化关键参数、提供多种评价指标(R2、MAE等)、中文注释清晰。代码要求MATLAB 2020b及以上版本运行,附带测试数据集,适合科研人员和新手使用。通过简单的数据替换,用户可快速应用于自己的预测项目中。原创 2025-08-17 23:12:16 · 248 阅读 · 0 评论 -
【消融实验】基于GWO-CNN-LSTM-Attention 6 模型多变量时序预测一键对比(多输出单输出)
【摘要】本文提供6种多变量时序预测模型的Matlab代码对比方案(GWO-CNN-LSTM-Attention等),适用于光伏/风电功率预测。代码实现一键运行功能,仅需执行main文件即可自动生成所有模型的预测结果和对比图表。程序内置北半球光伏数据,支持excel格式输入,提供R2、MAE等多项评价指标。GWO算法可优化隐藏层节点等超参数,代码含中文注释并附带测试数据集,兼容MATLAB 2020b及以上版本,适合科研人员快速实现多模型对比实验。原创 2025-08-17 23:10:59 · 457 阅读 · 0 评论 -
基于NRBO-CNN-GRU-Attention 6 模型多变量时序预测一键对比(多输出单输出)
【摘要】本文提供了一套基于6种混合神经网络模型的多变量时序预测Matlab代码,包括NRBO-CNN-GRU-Attention等创新组合。该代码采用牛顿-拉夫逊优化算法(NRBO)自动调参,支持光伏、风电等能源预测任务。主要特点:1)一键运行main函数即可生成所有预测结果和对比图表;2)内置北半球光伏测试数据,支持Excel格式数据替换;3)输出R2、MAE等多项评估指标;4)适配MATLAB2020b及以上版本。代码注释清晰,附带原算法文献,适合科研人员快速实现时序预测任务。原创 2025-08-11 12:12:41 · 455 阅读 · 0 评论 -
[原创]HFOA-CNN-GRU-Attention4模型单变量时序预测一键对比 (单输入单输出)
本文介绍了一种基于HFOA-CNN-GRU-Attention等四种模型的单变量时序预测Matlab代码,可直接运行main函数进行对比分析。代码已调试完善,支持Excel数据格式,适用于MATLAB2020b及以上版本。该方案包含R2、MAE等多维评价指标,提供丰富的可视化图表,并附赠测试数据集和算法原文献。特别适合科研新手使用,可实现一键式多模型性能对比。用户可替换自有数据进行预测分析,也可联系作者进行算法扩展和模型定制。原创 2025-08-10 23:55:14 · 210 阅读 · 0 评论 -
[原创]HFOA-CNN-LSTM-Attention4模型单变量时序预测一键对比 (单输入单输出)
摘要:本文介绍了一款基于Matlab的多模型单变量时序预测对比工具,包含HFOA-CNN-LSTM-Attention等4种模型。该代码已调试完备,支持一键运行,数据格式为Excel,适用于MATLAB2020b及以上版本。特色功能包括鹰鱼优化算法(HFOA)的集成、多种评价指标(R2、MAE等)及可视化结果展示。代码提供完整中文注释和测试数据集,适合科研人员及初学者使用,可方便地替换数据集进行预测分析。原创 2025-08-10 23:54:22 · 225 阅读 · 0 评论 -
[原创]BKA-Transformer-LSTM 4 模型单变量时序预测一键对比 (单输入单输出)
【摘要】本文介绍了一套基于MATLAB的单变量时序预测对比分析代码包,包含BKA-Transformer-LSTM等4种模型。该代码采用2024年最新发表的黑翅鸢优化算法(BKA),具有一键运行、中文注释清晰等特点,支持R2、MAE等多项评价指标。代码适配2023b及以上版本,提供测试数据集,适合科研人员快速实现时序预测对比实验。运行结果包含预测值与真实值的组合/单独可视化图表。代码获取方式详见文末,并附赠原算法文献。原创 2025-07-31 23:07:01 · 316 阅读 · 0 评论 -
CNN-BiGRU-Attention/CNN-BiGRU/BiGRU三模型多变量时间序列光伏功率预测一键对比
本文介绍了一款多变量时间序列光伏功率预测的Matlab代码,包含CNN-BiGRU-Attention、CNN-BiGRU和BiGRU三种模型对比分析。该程序已调试完成,可直接替换Excel格式的光伏数据集运行,适用于北半球光伏数据预测。代码支持2020b及以上MATLAB版本,提供R2、MAE、MSE等多种评价指标和丰富图表展示。中文注释清晰,适合新手使用,并附带测试数据集。用户也可根据需要定制其他算法模型。原创 2025-07-31 23:04:34 · 322 阅读 · 0 评论 -
CNN-GRU-Attention/CNN-GRU/GRU三模型多变量时间序列光伏功率预测一键对比
摘要:本文介绍基于CNN-GRU-Attention、CNN-GRU和GRU三种模型的多变量时间序列光伏功率预测Matlab代码。该程序已调试完成,可直接替换Excel格式数据集运行,使用北半球光伏数据测试。代码包含详细中文注释,评价指标丰富(R2、MAE等),支持多种图形化结果展示。运行环境要求MATLAB2020b及以上版本,适应用户定制其他算法需求。配套提供测试数据集,方便用户快速上手使用。原创 2025-07-31 23:03:36 · 166 阅读 · 0 评论 -
CNN-BiLSTM-Attention/CNN-BiLSTM/BiLSTM三模型多变量时间序列光伏功率预测一键对比
本文介绍了一键对比Matlab代码,用于多变量时间序列光伏功率预测,包含CNN-BiLSTM-Attention、CNN-BiLSTM和BiLSTM三种模型。程序已调试完成,可直接替换数据集运行,适用于MATLAB 2020b及以上版本。代码提供R2、MAE等评价指标和多种可视化结果,含中文注释和测试数据集,适合新手使用。用户也可定制其他算法。数据格式为excel,基于北半球光伏数据测试。原创 2025-07-31 23:01:24 · 242 阅读 · 0 评论 -
[原创]AGDO-Transformer-LSTM 4 模型单变量时序预测一键对比 (单输入单输出)
摘要:本文介绍了一个基于Adam梯度下降优化算法的多模型时序预测MATLAB代码包,包含AGDO-Transformer-LSTM等4种模型对比分析。该代码具有即插即用特性,支持单变量时序预测,提供R2、MAE等多项评价指标和可视化结果。代码采用2023b及以上MATLAB环境,附赠测试数据集,适合科研人员快速实现时序预测任务。研究成果已发表于Nature子刊Scientific Reports期刊,代码包含详细中文注释,用户只需替换Excel格式数据即可运行。原创 2025-07-30 23:05:13 · 233 阅读 · 0 评论 -
[原创]WMA-Transformer-LSTM 4 模型单变量时序预测一键对比 (单输入单输出)
摘要:本文介绍了一套基于MATLAB的单变量时序预测对比系统,包含WMA-Transformer-LSTM等4种模型一键对比功能。代码已调试完善,可直接替换Excel格式数据集运行,支持R2、MAE等多指标评估,并附带测试数据。采用2025年最新发表的WMA优化算法,代码含中文注释,适用于MATLAB 2020b及以上版本。系统可输出预测与真实值的组合/单独对比图像,方便用户直观比较模型性能。该解决方案特别适合时序预测领域的新手研究人员快速实现多模型对比分析。原创 2025-07-29 22:42:46 · 609 阅读 · 0 评论 -
[原创]HFOA-CNN-BiLSTM-Attention4模型单变量时序预测一键对比 (单输入单输出)
摘要:本文提供四种单变量时序预测模型(HFOA-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、CNN-BiLSTM、BiLSTM)的Matlab对比代码包。代码已调试完成,支持Excel数据格式,包含最新HFOA优化算法(附原文献PDF)。运行要求MATLAB 2020b+,评价指标全面(R2/MAE/MSE等),含丰富中文注释和测试数据集。代码可一键运行对比,输出预测与真实值对比图,适合时序预测研究和初学者使用。原创 2025-07-29 22:41:42 · 442 阅读 · 0 评论 -
[独家]LightGBM+CPO-Transformer-GRU四模型多变量回归预测一键对比 (多输入单输出)
摘要:本文介绍了一个基于LightGBM+CPO-Transformer-GRU的多变量回归预测模型Matlab代码,适用于共享电车租赁数据预测。该代码集成了LightGBM特征选择、CPO算法优化和Transformer-GRU混合模型,包含四种模型对比功能。采用UCI共享电车数据集(13输入特征),通过CPO优化关键超参数,提供R2、MAE等多种评价指标。代码已调试完备,附带中文注释和测试数据,适合MATLAB 2023b及以上环境使用,特别适合新手快速上手。文中还展示了CPO算法的SCI论文来源和代码原创 2025-07-28 23:35:06 · 439 阅读 · 0 评论 -
[独家]LightGBM+CPO-Transformer-LSTM四模型多变量回归预测一键对比 (多输入单输出)
摘要:本文介绍了一种基于LightGBM和冠豪猪算法(CPO)优化的Transformer-LSTM混合模型,用于多变量回归预测。该方案通过LightGBM进行特征选择,CPO算法优化Transformer-LSTM超参数,包含四种模型对比分析。采用UCI共享电车租赁数据集,包含13个特征变量,输出为租赁总数。代码在Matlab 2023b环境下运行,提供R2、MAE等评价指标,附带详细注释和测试数据,适合初学者直接使用。CPO算法为2024年新发表的中科院1区SCI成果,能有效提升预测精度。原创 2025-07-28 23:34:04 · 603 阅读 · 0 评论 -
[独家]LightGBM+CPO-Transformer-BiLSTM四模型多变量回归预测一键对比 (多输入单输出)
【摘要】本文介绍了一个基于LightGBM-CPO优化Transformer-BiLSTM的多变量回归预测模型Matlab实现方案。该方案整合了四种模型对比(LightGBM+CPO-Transformer-BiLSTM、CPO-Transformer-BiLSTM、Transformer-BiLSTM、BiLSTM),采用UCI共享电车租赁数据集(13个输入特征),通过LightGBM特征选择结合2024年新提出的冠豪猪优化算法(CPO)优化Transformer-BiLSTM超参数。代码已调试完善,支持原创 2025-07-28 23:32:55 · 583 阅读 · 0 评论
分享