Harris-Affine仿射不变特征匹配算法

本文详细介绍了Harris-Affine算法的原理和实现过程,包括Harris-Laplace尺度不变角点算法、Harris-Affine的仿射不变性以及仿射匹配实验结果。Harris-Affine算法在尺度空间中提取特征点,并通过二阶矩计算实现仿射不变性。此外,还提到了Hessian-Affine算法,它基于二阶梯度微分算子,提供更强的稳定性和匹配性能。最后,提供了代码下载链接和相关参考资料。
Harris-Affine原理概述

    文末已添加Github代码链接地址

尺度不变Harris-Laplace角点算法简述

  经典Harris作为当下运用最为广泛的提取角点算子,具有旋转、尺度、部分光照不变性,计算简单。Hessian角点检测是比Harris算子的更加稳定的角点检测算子只是计算效率相比Harris要高。随着Harris算子提出进一步发展为具有尺度不变性的角点检测算子Harris-LaplaceHarris-Laplace尺度不变算子主要通过在尺度空间图像上检测角点时添加尺度参数,主要步骤:
  1 当前尺度图像上搜索每一个候选点进行拉普拉斯响应值计算,满足Harris矩阵绝大值大于给定阈值条件。

F(x,y,σn)=σ2|Lxx(x,y,σn)+L
Harris - Affine是一种用于图像特征点检测的算法,它结合了Harris角点检测和仿射不变性的特性。 ### 原理 Harris角点检测是基于图像灰度的变化来寻找角点。当在图像的某个窗口内,向各个方向移动窗口时,若灰度值都有较大变化,则认为该窗口内存在角点。其核心是计算图像在各个方向上的灰度变化率,通过一个自相关矩阵来表示。而Affine仿射)则赋予了算法仿射不变性,即算法检测到的特征点在图像发生仿射变换(如旋转、缩放、平移、错切等)后仍能被正确识别。在Harris - Affine中,通过对图像进行多尺度分析,在不同尺度下检测角点,并利用仿射变换模型来确保特征点的仿射不变性。 ### 应用 - **图像匹配**:在不同视角、光照等条件下拍摄的同一物体的图像中,Harris - Affine可以检测到具有仿射不变性的特征点,通过匹配这些特征点,可以实现图像的对齐、拼接等操作。 - **目标识别**:在复杂场景中识别特定目标时,该算法能够提取目标的稳定特征点,用于目标的分类和识别。 - **三维重建**:在从多个二维图像重建三维场景时,Harris - Affine检测的特征点可以作为对应点,帮助确定不同图像之间的相对位置和姿态,从而实现三维模型的重建。 ### 实现实现方面,通常可以使用编程语言结合计算机视觉库来完成。以Python和OpenCV库为例,虽然OpenCV没有直接提供Harris - Affine实现,但可以通过自定义代码结合Harris角点检测和仿射变换的相关操作来近似实现。以下是一个简单的Harris角点检测示例代码: ```python import cv2 import numpy as np # 读取图像 image = cv2.imread('your_image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = np.float32(gray) # 进行Harris角点检测 dst = cv2.cornerHarris(gray, 2, 3, 0.04) # 膨胀角点结果,方便显示 dst = cv2.dilate(dst, None) # 标记角点 image[dst > 0.01 * dst.max()] = [0, 0, 255] # 显示结果 cv2.imshow('Harris Corners', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 要实现完整的Harris - Affine,还需要进一步添加仿射不变性的处理步骤,如尺度空间分析、仿射归一化等。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值