一些常见的工业光源及其应用场景和可检测的缺陷:
可见光光源
- LED光源:
- 应用场景:因具有发光效率高、耗电量少、使用寿命长等特点,被广泛应用于各种工业检测场景,如电子元件检测、包装检测、汽车零部件检测等.
- 检测缺陷:可检测电子元件的焊点缺陷、零件表面的划痕、污渍,包装上的文字、图案印刷缺陷,以及汽车零部件的表面损伤、尺寸偏差等.
- 荧光灯:
- 应用场景:适用于需要大面积均匀照射的场所,如生产车间的整体照明、大型物体表面检测等.
- 检测缺陷:能检测物体表面较大面积的色差、污渍,以及一些较为明显的表面划痕等,但对于细微缺陷的检测效果相对较弱.
- 卤素灯:
- 应用场景:常用于对亮度和色彩还原度要求较高的检测场景,如珠宝鉴定、精密机械零件检测等.
- 检测缺陷:可清晰地显示珠宝的纹理、瑕疵,以及机械零件的表面粗糙度、加工痕迹等,帮助判断零件的加工精度和质量。
- 白炽灯:
- 应用场景:由于其显色性好,接近自然光,可用于对物体颜色和外观要求较高的检测,如服装、纺织品检测,以及一些需要观察物体真实颜色的场合.
- 检测缺陷:能够检测出服装和纺织品上的色差、污渍、破损等缺陷,以及其他物体表面的颜色不均匀、褪色等问题。
特殊光源
- 激光光源:
- 应用场景:常用于高精度测量和检测,如三维形貌测量、材料厚度测量、半导体芯片检测等.
- 检测缺陷:可检测物体表面的微小变形、凸起或凹陷,测量材料的厚度偏差,以及检测半导体芯片上的线路缺陷、光刻精度等问题。
- 紫外光源:
- 应用场景:对表面的细微特征敏感,适用于检测对比不够明显的地方,如食用油瓶上的文字检测、食品药品包装的防伪检测、电子元件的荧光标记检测等.
- 检测缺陷:可以检测物体表面的荧光标记是否完整、清晰,以及食品药品包装上的隐性防伪标识,还能发现一些经过特殊处理后在紫外光下才会显现的微小缺陷或污染物.
- 红外光源:
- 应用场景:具有较强的穿透能力,适合检测透光性差的物体,如棕色口服液杂质检测、塑料薄膜内部缺陷检测、电气设备的热成像检测等.
- 检测缺陷:可检测口服液中的杂质、异物,塑料薄膜的气泡、孔洞等内部缺陷,以及电气设备的热点、故障点等。
结构光光源
- 条形光源:
- 应用场景:是一种从侧面打光的照明光源,角度灵活可调节,常用于尺寸测量、外观检测等方面,如LCD缺陷的检测、包装文字检测、纸张质量检测等.
- 检测缺陷:可检测LCD屏幕的显示缺陷、像素坏点,包装上的文字印刷错误、模糊,纸张的褶皱、破损、污渍,以及制造物的裂纹等.
- 环形光源:
- 应用场景:以环形排列的光线均匀照射,可提供无阴影的光照效果,适用于电子元件检测、标签检测、字符识别和印刷品检测等,不同角度的环形光源应用场景有所差异.
- 检测缺陷:能检测电子元件的引脚缺陷、表面划痕,标签的粘贴位置偏差、印刷质量问题,字符的清晰度、完整性,以及印刷品的色彩偏差、套印不准等.
- 同轴光源:
- 应用场景:通过半透半反的镜片与相机同轴,垂直照射到被测物体表面,适合检测高反光的物体,常用于手机屏幕、金属镜面、光学镜片等高反光表面的检测.
- 检测缺陷:可清晰显示这些高反光表面的划痕、凹凸、污渍等缺陷,以及微小的气泡、杂质等问题.
- 穹形光源:
- 应用场景:主要用于球型或曲面物体的缺陷检测、不平坦的光滑表面字符的检测、金属或镜面的表面检测,如玻璃瓶、滚珠、小工件表面、塑料或铝制容器等.
- 检测缺陷:可以检测曲面物体表面的划痕、凹陷、凸起,以及光滑表面字符的清晰度、完整性,金属或镜面的平整度、光洁度等缺陷.
结构光光源的种类、应用场景及检测缺陷原理的详细介绍:
结构光光源的种类
- 线扫描结构光:由主动光源和相机组成,光源缓慢扫过待测物体,相机记录扫描过程,依据相机和光源的相对位姿及相机内参等参数重建物体三维结构。如在物体体积测量中,通过线激光扫描物体,结合相关参数计算出物体的体积.
- 面阵结构光 :
- 随机结构光:通过投影器向被测空间投射亮度不均且随机分布的点状结构光,由双目相机成像,经极线校正后进行双目稠密匹配来重建深度图。
- 编码结构光:
- 时序编码:在一定时间内,投影器向被测空间投射一系列明暗不同的结构光并由相机成像,每个像素对应唯一的二进制编码,通过查找双目影像中编码值相同的像素实现匹配,进而得出深度信息。
- 空间编码:将光场的振幅、相位、偏振等信息进行编码,形成如格雷码、正弦条纹等图案投射到物体表面,相机拍摄后根据图案的畸变和编码信息解调出物体的三维信息.
结构光光源的应用场景
- 工业制造:用于检测精密零部件的尺寸、形状和表面缺陷,如汽车发动机缸体、航空航天零部件等。通过投射结构光获取零部件的三维信息,可精确测量尺寸偏差、检测表面划痕、裂纹等缺陷,确保产品质量.
- 电子行业:对电子元件、芯片、线路板等进行检测和定位,如检测芯片引脚的共面度、间距,识别线路板上的焊点缺陷、字符印刷质量等,提高生产效率和产品可靠性.
- 物流与仓储:在物流自动化中,可实现货物的三维扫描和体积测量,便于仓储管理和物流配送规划;还可用于识别和定位货架上的货物,提高货物存储和检索的效率。
- 医疗领域:进行人体部位的三维建模和测量,如牙科中的牙齿模型重建、骨科中的骨骼形态分析等,辅助医生进行诊断和治疗方案制定;也可用于医疗器械的检测和校准.
- 文化遗产保护:对文物、艺术品等进行三维数字化建模,记录其原始形态和细节信息,为文物保护、修复和研究提供重要数据支持;还可用于虚拟展览,让人们更直观地欣赏文化遗产.
结构光光源检测缺陷原理
- 三角测量原理:结构光投射到物体表面后,形成变形的光条纹或图案,相机从不同角度拍摄这些变形的图案。基于三角测量原理,通过已知的相机与光源的位置关系、相机的内参以及光条纹或图案在图像中的畸变程度,计算出物体表面各点的三维坐标,从而检测出物体表面的凹凸不平、划痕、裂纹等缺陷。例如,当物体表面有划痕时,划痕处的光条纹会发生中断、变形或位移,通过分析这些变化可确定划痕的位置和深度.
- 相位测量原理:对于采用正弦条纹等相位编码的结构光,当条纹投射到物体表面后,由于物体表面高度的变化,条纹的相位会发生调制。通过相机拍摄并提取条纹的相位信息,再根据相位与高度的对应关系,解调出物体表面的高度分布,进而检测出表面的缺陷和形貌变化。例如,在检测金属板材的平整度时,若板材表面存在凹凸变形,投射的正弦条纹相位会相应改变,由此可判断出板材的平整度缺陷.
- 强度对比原理:结构光光源投射的光强在物体表面形成特定的分布,当物体表面存在缺陷时,缺陷区域对光的反射、散射或吸收特性与周围正常区域不同,导致相机拍摄到的图像中缺陷区域的光强发生变化。通过分析图像中光强的差异,可识别出缺陷的位置和类型。如检测玻璃表面的污渍时,污渍区域会使反射光强减弱,在图像中呈现出较暗的区域.