卷积神经网络(CNN)及其实践

卷积神经网络(CNN)及其实践

一、CNN 的基础概念先行

1.1 CNN 的基本结构简介

  • 首先,我们应该明确 CNN 是被成功应用的 DNN 模型之一,它们并不独立。特别是针对图片类数据集的时候,我们发现针对一张 28 x 28 (784)像素的图片喂给 全连接网络需要优化的参数就有 397510 个参数(近40万)。如下图,故如果我们将真实生活中的高分辨率的彩色图像直接喂给全连接网络,则待优化的参数就更多了。然而待优化的参数过多,就容易出现过拟合现象。实际中,我们会先对原始图像进行特征提取,把提取到的特征喂给全连接网络,再让全连接网络计算出分类的评估值,而卷积便是一种有效的特征提取方法,故 CNN 结构也是这样设计的,由卷积层 + 池化层,不断组合最后在经过一层或者多层全连接网络,进行识别、分类、或者检测操作。 故我们便可以把卷积认为是一种有效的特征提取方法。

这里写图片描述

  • 接下来,我们来
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smilejiasmile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值