卷积神经网络(CNN)及其实践
一、CNN 的基础概念先行
1.1 CNN 的基本结构简介
- 首先,我们应该明确 CNN 是被成功应用的 DNN 模型之一,它们并不独立。特别是针对图片类数据集的时候,我们发现针对一张 28 x 28 (784)像素的图片喂给 全连接网络需要优化的参数就有 397510 个参数(近40万)。如下图,故如果我们将真实生活中的高分辨率的彩色图像直接喂给全连接网络,则待优化的参数就更多了。然而待优化的参数过多,就容易出现过拟合现象。实际中,我们会先对原始图像进行特征提取,把提取到的特征喂给全连接网络,再让全连接网络计算出分类的评估值,而卷积便是一种有效的特征提取方法,故 CNN 结构也是这样设计的,由卷积层 + 池化层,不断组合最后在经过一层或者多层全连接网络,进行识别、分类、或者检测操作。 故我们便可以把卷积认为是一种有效的特征提取方法。
- 接下来,我们来