线性代数基础

一、特征值和特征向量

1、计算 λ 和 ξ 

A ξ = λ ξ 

| A - λE | = 0

(A - λE 化为行最简)

取 λ1 时,A X = 0  ⇒ ξ1 = $(X1,X2,X3)^{^T}$

取 λ2 时,A X = 0  ⇒ ξ2 = $(X1,X2,X3)^{^T}$



 2、 λ 和 ξ 线性关系


3、秩一方阵

二、矩阵相似

若 P^{-1}AP  = \Lambda ,则 |A - λE| = 0。

若普通矩阵 A、B 相似,则 r(A) = r(B)、tr(A) = tr(B)、
|A| = |B|、|A - λE| = |B - λE| 即 A 和 B 的 特征值 相同。

P^{-1}AP  = B \Leftrightarrow  A 和 B 相似。

PP^{-1}AP = PB  \Leftrightarrow  AP=PB \Leftrightarrow A 和 B 相似。


若两矩阵相似,则它们的秩相等。如果秩不等,则不相似。

三、 

Q = (α1,α2,α3)

Q^{-1} \ A \ Q = B

A Q = Q B

A (α1,α2,α3) =( α1+α2+α3,2α2+α3,2α2+3α3 )

(\alpha_{1} + \alpha_{2} + \alpha_{3}, 2\alpha_{2} + \alpha_{3}, 2\alpha_{2} + 3\alpha_{3}) = (\alpha_{1}, \alpha_{2}, \alpha_{3}) \left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \\ \end{array} \right\}

所以

 B=\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 1 & 3 \\ \end{array} \right\}

对 B 进行| B-λE | = 0,得到 B 的特征值,

因为 A 和 B 相似,所以B的特征值等于A的特征值。

由 (B-λE)X=0 得 B 的特征向量 α ,

因为 Q^{-1} \ A \ Q 的特征向量为 α ,所以 A 的特征向量为 Q α。

矩阵 P 由 A 的特征向量组合得到。

四、谱分解定理

题眼:A为实对称矩阵,求A





 五、二次型 → 标准型

正交变换法



配方法 


“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值