直线的黑塞范式(hesse normal form of a line)

直线的黑塞范式是由数学家 奥斯卡·黑塞 提出,便于表示某点到直线的距离。

一般表达式

黑塞范式的一般表达式为:

\alpha x+\beta y+\gamma =0 
其中:\alpha ^{2}+\beta^{2}=1

或表示为:

xcos\varphi+ysin\varphi-p=0

其中角\varphi为直线与y轴的夹角,p为直线到原点的距离。

推导过程

下面给出推导过程,

假设有一直线l,如图所示:

由图可知:

cos\psi =\frac{p}{m}

sin\psi =\frac{p}{n}

即:

m=\frac{p}{cos\psi }

n=\frac{p}{sin\psi }

根据直线截距式,可以将直线表示为:

\frac{x}{m}+\frac{y}{n}=1

m n代入,即:

x cos\psi + y sin\psi -p =0

即:

\alpha x+\beta y+\gamma =0

\alpha =cos\psi

\beta =sin\psi

\gamma =-p

与一般式之间的转换

将直线表示的一般式改为:

\lambda Ax+\lambda By+\lambda C=0

\lambda A=cos\psi

\lambda B=sin\psi

即:

(\lambda A)^{2}+(\lambda B)^{2}=1

\lambda^{2}(A^{2}+B^{2})=1

\lambda=\pm \frac{1}{\sqrt{A^{2}+B^{2}}}

即可以将一般式表示为黑塞范式:

\frac{Ax+By+C}{\pm\sqrt{A^{2}+B^{2}}}=0

点到直线的距离

若线外有一点M(x_{0},y_{0}),求该点到直线的距离:

则该点所在平行线与原点的距离为:

x_{0}cos\psi+y_{0}sin\psi-p_{0}=0

p_{0}=x_{0}cos\psi+y_{0}sin\psi

该点到直线的距离为:

\Delta p=p_{0}-p=x_{0}cos\psi+y_{0}sin\psi-p

转化为一般式即:

\Delta p=\frac{Ax0+By0+C}{\pm\sqrt{A^{2}+B^{2}}}

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值