线性代数——矩阵复习

这篇文章是为了复习矩阵的一些知识正交矩阵如果:AAT=EAA^T=EAAT=E(EEE为单位矩阵,ATA^TAT表示“矩阵AAA的转置矩阵”),或ATA=EA^TA=EATA=E,则nnn阶实矩阵AAA称为正交矩阵。若AAA为正交阵,则满足以下条件 :1)ATA^TAT是正交矩阵2)(EEE为单位矩阵)3)ATA^TAT的各行是单位向量且两两正交4)ATA^TAT的各列是单位向量且两...
摘要由CSDN通过智能技术生成

这篇文章是为了复习矩阵的一些知识

正交矩阵

如果: A A T = E AA^T=E AAT=E E E E为单位矩阵, A T A^T AT表示“矩阵 A A A的转置矩阵),或 A T A = E A^TA=E ATA=E,则 n n n阶实矩阵 A A A称为正交矩阵

A A A为正交阵,则满足以下条件 :
1) A T A^T AT是正交矩阵
2)( E E E为单位矩阵)
3) A T A^T AT的各行是单位向量且两两正交
4) A T A^T AT的各列是单位向量且两两正交
5) ( A x , A y ) = ( x , y ) , x , y ∈ R (Ax,Ay)=(x,y), x,y∈R (Ax,Ay)=(x,y),x,yR
6) ∣ A ∣ = 1 |A|=1 A=1 − 1 -1 1
7) A T = A − 1 A^T=A^{-1} AT=A1
8)正交矩阵通常用字母 Q Q Q表示。


实对称矩阵

如果有 n n n阶矩阵 A A A,其矩阵的元素都为实数,且矩阵 A A A的转置等于其本身( a i j = a j i a_{ij}=a_{ji} aij=aji)({i,j}为元素的脚标),则称 A A A为实对称矩阵。

主要性质:
1.实对称矩阵 A A A的不同特征值对应的特征向量是正交的。
2.实对称矩阵 A A A的特征值都是实数,特征向量都是实向量。
3. n n n阶实对称矩阵 A A A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。
4.若 A A A具有 k k k重特征值 λ 0 λ_0 λ0 必有 k k k个线性无关的特征向量,或者说秩 r ( λ 0 E − A ) r(λ_0E-A) r(λ0EA)至多为 n − k n-k nk,其中 E E E为单位矩阵。
5.实对称矩阵 A A A必能找到正交矩阵 Q Q Q,使得 A = Q T Λ Q A=Q^T\Lambda Q A=QTΛQ,其中 Λ \Lambda Λ是对角线上为特征值的对角阵,Q是特征向量组成的正交矩阵。


证明: A T A A^TA ATA A A T AA^T AAT拥有相同的非零特征值

假设 A A A是一个 m × n m×n m

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值