Asymmetric Non-local Neural Networks

Asymmetric Non-local Neural Networks

论文:Asymmetric Non-local Neural Networks for Semantic Segmentation,ICCV,2019.

链接:paper

代码:github

本文是在Non-local Neural Networks(cvpr,2018) 这篇论文的基础上改进得来的,non-local block Non-local模块作为语义分割任务中很有用的技术,但因为计算量较大,需要较大的显存开销,这阻碍了non-local network在实际应用中的使用。本文提出了APNB来减少non-local block的计算量和显存开销,AFNB通过提升分割性能增强non-local block的学习能力。我们着重分析这篇论文的改进点。

Revisiting Non-local Block

img

输入X \in \mathbb{R}^{C*H*W}

1.经过3个1x1的卷积Query,Key和Value变换之后,分别得到 : \varnothing \in \mathbb{R}{\hat{C}HW}==\mathbb{R}{\hat{C}*N}\theta \in \mathbb{R}{\hat{C}*H*W}==\mathbb{R}{\hat{C}*N}\gamma \in \mathbb{R}{\hat{C}*H*W}==\mathbb{R}{\hat{C}*N}

2.计算所有空间位置特征向量的相似度:V=\varnothing ^{T}*\theta

3.归一化:\overrightarrow{V}=softmax(V)

4.根据所有空间位置特征向量的相似度加权求和:O=\overrightarrow{V}*\gamma^ {T}

5.新特征经过1*1卷积变换后与原输入特征拼接:Y = cat\left(W_{o}\left(O^{T} \right ),X\right)

计算复杂度:O\left ( \hat{C}N^{2} \right )=O\left ( \hat{C}H{2}W{2} \right )

Asymmetric Pyramid Non-local Block(APNB)

Non-local 的计算复杂度主要来自第2步和第4步:

img

可以看出经N(红色)改变为S,不会改变输出的size。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值