ReID done right towards good practices for person re-identification

本文探讨了提升人员再识别性能的关键策略,如模型预训练、高分辨率图像、合适的基础网络、三元组损失优化和数据增强(特别是剪切)。文章揭示了每个步骤对结果的贡献,提供了一份详细的操作指南,使方法在基准数据集上超越复杂竞争对手。
摘要由CSDN通过智能技术生成

ReID done right: towards good practices for person re-identification

本文中,我们采用了一种不同的方法,并仔细设计了一个简单的深层架构的每个组件,以及关键的策略,以有效地对其进行培训,从而实现人员的重新识别。我们对每个设计选择都进行了广泛的评估,得出了一份人员再识别的良好实践清单。通过遵循这些实践,我们的方法在四个基准数据集上以很大的优势超越了最先进的方法,包括带有辅助组件的更复杂的方法。

提升训练结果的技巧:

在这里插入图片描述

  • 模型预训练
  • 足够大的图像分辨率
  • 高效的基础网络
  • 难样本挖掘三元组损失
  • 数据增强方法(比如,图像随机擦除)

数据增强:

我们在训练时对图像应用不同的变换,即翻转、裁剪和剪切。我们观察到剪切对性能有很强的影响,并且使用另外两个增强方法变得多余。我们认为,这是因为剪切是我们的表示对遮挡更加鲁棒,并且还避免了对数据集少的训练数据的过度拟合。

在这里插入图片描述

并且我们观察到,当用剪切进行训练时,当图像被噪声替换的百分比逐渐增加时,我们会获得最佳结果。

图像分辨率:

Market1501 数据集的图像具有256 × 128的固定大小,而来自杜克大学的图像具有可变大小,平均为256×128像素。在我们的实验中,我们重新缩放图像,使最大图像尺寸为256、416或640像素,而不会扭曲纵横比。我们在表2中报告了结果,并观察到使用足够大的分辨率是实现最佳性能的关键。将分辨率从256提高到416可以将mAP提高3%,而将分辨率进一步提高到640像素可以忽略不计。我们建议将输入大小设置为416像素。
在这里插入图片描述

池化操作:

表3 (a)比较了卷积层产生的特征图的两种汇集策略。正如我们所看到的,最大池的性能优于平均值池化操作。我们建议使用最大池化操作。也可以考虑使用多种池化结合的方式进行池化。

基础网络:

表3 (b)比较了我们网络的卷积主干的不同架构(#3)。结果表明,与使用ResNet-50相比,使用ResNet-101显著提高了结果(两个数据集约+5 mAP)。内存需求越大,ResNet-152只能略微改善结果。

预训练模型:

表3 ©显示了在使用排序损失来调整整个网络的权重之前,精细调整卷积层对分类任务的重要性。对模型进行难度增加的任务训练是非常有益的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值