CherryStudio使用指南——详细教程让你玩懂AI

为什么使用?

CherryStudio 就相当于一个 AI 的合集,能够集合多模型对话,知识库管理,AI 绘画等各种功能的一个集合工具。

而且内容都是本地的,隐私性是拉满了。

当然,主要目的还是为了提升工作效率。

下载

客户端下载 | CherryStudio

直接进入该网站进行下载。

安装

双击下载的 exe 文件。

为所有用户安装,点击下一步。

可以更改一下路径,不用默认安装在 C 盘。

点击安装。

这就安装成功了,十分的简单。

使用

接下来就是如何使用。

其实也可以看官方的文档

添加模型

点击右下角的设置按钮。

在模型服务这里就可以添加各种大模型了。

我们可以使用 API 调用大模型或者使用本地部署的模型。

API 调用

这个其实非常的简单。

以硅基流动为例子。

注册一下账号,进入 API 秘钥页面。

创建 API 秘钥,然后复制一下 API 填入下面的输入框中。

可以点一下检查,随便选个模型,来看 API是否有效。

然后点击右上角的开关。

这时硅基流动旁边会出现一个绿色的 on,表示模型开启。

本地调用

这里以 Ollama 为例,当然 LM Studio 也可以使用。

Ollama 本地部署的可以看我这一篇博客使用ollama管理模型

API 秘钥不用填写。

你要是调用的本地的,API 地址就不用动。

如果是其他机器的,就把 localhost 改为对应的地址。

然后点击添加。

这里填写模型的名字,这儿需要查看一下 ollama 的文档,模型ID 不是随便起名的,需要相对应。

这里我使用 deepseek-r1:14b 的模型。

测试使用

回到最开始的界面,上面可以切换已经加入的模型,下面与之聊天,我这里使用的是本地部署的 deepseek。

接下来就可以愉快的对话了。

联网功能

有时候需要使用大模型阅读一些网页或者搜索一些东西,这时候就需要大模型具有联网的功能。

这其中有一些大模型是自带联网功能的,就看你的 LLM 旁边有没有带这个小的🌐网络图标, 比如这个 Gemini 2.0 Flash 就是自带联网功能。

但是像是本地部署的模型,还有 DeepSeek 模型是不自带联网功能的,这时候就需要添加联网的模型。

添加网络搜索

这里我使用 tavily。

Tavily 是一款用于增强搜索引擎能力的人工智能驱动工具,它可以帮助用户更快速、更准确地找到所需信息。

使用起来也十分简单。

还是打开设置,选择网络搜索,搜索服务上默认就是 Tavily。

打开 Tavily 网页,直接使用 Google 登录,然后复制一下 API Keys 填入上图的 API 秘钥输入框就可以联网用大模型了。

不过要注意一下 credits,免费给了 1000 个,每搜索一次消耗一个。

也可以设置一下搜索设置,可以把增强模式打开。

使用网络搜索

先打开输入框下方的🌐。

这里使用 DeepSeek 进行提问,可以看到现在可以联网了。

提问的语言不同,也会给出相应的答复,比如上方用中文提问,给出的就是 B 站的教程。

使用英文提问,给的就是油管。

给的链接数目跟上方设置的搜索结果个数有关,默认是 5 个,最高是 20 个。

数据设置

没什么用,就是把对话保存一下。

目前我觉得没什么用。

MCP 使用

可以看这一篇博客 MCP指南

知识库

目前知识库最常用的方法是RAG,也就是检索式增强生成。

输入文件,拆分成文本块,然后用嵌入模型把文本块向量化,然后就存储在向量数据库里面。

用户检索数据的时候,也是把问题向量化,然后跟向量数据库匹配,把最符合的几个返回给 AI 让 AI 进行归纳总结。

所以其实不是特别的好用。

有三大问题。

  • 切片很粗暴:这个目前没有好的方法
  • 检索不精准:使用重排模型
  • 没有大局观:使用数据库 MCP

添加重排模型

在硅基流动模型下面点击添加。

添加重排模型。

这个是用来优化检索精度的。

添加知识库

选中侧栏的知识库。点击添加。

随便起个名称,然后设置一下嵌入模型以及重排模型,注意 Pro 这个嵌入模型是付费的,并且使用给知识库喂材料会消耗大量的 token。

把资料拖进去,蓝点表示正在向量化,根据你资料的大小,可能要等待较长的时间。

注意材料要使用 utf-8 编码,使用 GB2312 是乱码的。

变成绿色就可以使用了。

这时候我们可以搜索一下知识库,看看内容,右上角有得分情况。注意搜索也是调用了大模型的,所以如果不是本地部署的话需要联网才能使用。

使用知识库

回到聊天,在聊天栏下面添加知识库,选择添加刚刚创建好的知识库——文章。

使用。

可以看到会标注引用内容。

迁移配置

我有多台电脑,可能需要在多处使用 cherrystudio,但就看上面的博客,就知道配置起来还是比较麻烦的。

不过所幸,cherrystudio 给了迁移配置的功能,我们可以快速迁移配置到不同的电脑上。

备份

打开设置,选择数据设置,第一个就是。

选择备份,选择一个文件夹去保存备份。

使用备份

这就是另一台电脑了,可以看到什么都没有设置,还是数据设置这里,这次点击恢复。

选择刚才备份的文件,是一个zip文件。

然后等待数据恢复,可能会有些慢。

等待片刻,可以看到数据已经迁移了,我们不必再麻烦一次进行多处配置了。

同时知识库使用的向量数据库,以及 MCP 的一些配置也会一并迁移过去。

内容概要:本文档详细介绍了 DEEP SEEK 的本地部署及其与私有知识库整合的具体步骤。主要包括两大部分:Ollama 平台的使用方法和 DeepSeek R1 模型的安装指导。Ollama 是一种能够便捷部署深度学习模型(尤其是大型语言模型)的工具,它支持多种操作系统并在命令行中执行相应操作以完成从下载、配置直至实际使用的全过程。文中针对不同硬件条件给出了具体配置推荐,并逐步讲解了从安装 Ollama 到运行特定大小版本 DeepSeek 模型(如 1.5b 至 70b),再到设置 API 键连接云端服务以及最后利用 Cherry Studio 构建个人专属的知识库的一系列操作指南。同时附上了多个辅助资源如视频教程、在线演示平台链接以便更好地理解和学习整个过程。 适合人群:适合有一定技术背景且想探索本地部署人工智能模型的初学者或是希望通过本地化部署提高效率的研发团队。 使用场景及目标:一是帮助用户了解并掌握在本地环境中配置高性能 AI 工具的全流程操作;二是使用户能够根据自己拥有的计算资源情况合理挑选合适的模型大小;三是通过集成私有知识库为企业内部提供定制化的问答或咨询系统,保护敏感数据不受公开访问威胁。 其他说明:考虑到安全性和稳定性因素,作者还提供了应对潜在风险如遭遇网络攻击时选用可靠替代源——硅基流动性 API 来保障服务持续稳定运作,并强调在整个实施过程中应谨慎处理个人信息及企业关键资产以防泄露事件发生。此外,提到对于更高级的功能例如基于 Ollama 实现本地知识库还有待进一步探讨和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值