手把手教你用DeepSeek + Cherry Studio 打造本地AI+API个人知识库!

1、Cherry Studio是什么?

Cherry Studio,一款聚合主流大语言模型服务的桌面工具。它通过直观的可视化界面和远程API接口 ,实现了跨平台调用各类模型,既降低了对本地硬件的依赖,又大幅提升了使用效率,为大家搭建高效知识库提供了全新思路。

2、 Cherry Studio功能特色

  • 优质使用体验:支持 Windows、Mac、Linux 跨平台使用,一键安装,开箱即用,支持明暗主题与透明窗口等
  • 多样化 LLM 服务支持:支持多款国内外最先进的 AI 大语言模型,OpenAI、Gemini、Anthropic、硅基流动等
  • 智能助手与对话:内置 300+ 预配置 AI 助手并支持自定义创建专属助手
  • 文档与数据处理:支持文本、图片、Office、PDF 等多种格式,支持 WebDAV 文件管理与数据备份等
  • 实用工具集成:具备搜索、翻译、话题管理等功能

3、Cherry Studio 下载安装

打开Cherry Studio官网:https://cherry-ai.com/download

选择适配自己操作系统的版本进行下载

img

下载完成后,默认安装就可以

img

安装路径根据自身操作系统需求进行调整

img

安装完成后,如下显示

img

打开Cherry Studio,显示如下

img

打开设置,配置相应的API

本次以硅基流动API进行测试,选择设置,右侧配置相应的API密钥

img

如果没有硅基流动API

登录硅基流动官网https://siliconflow.cn/zh-cn/

申请硅基流动API

img

创建账号,登录账号后,选择API 密钥,*新建****API 密钥***

img

输入申请好的API 密钥,点击检查进行连通性测试,正常连通会弹出模型选择deepseek-ai/DeepSeek-R1

img

检查默认模型是否是deepseek-ai/DeepSeek-R1

img

添加本地知识库,点击左侧知识库

名称:自定义

嵌入模型选择:BAAI/bge-m3

img

添加本地文档,这里添加了一些常用软件部署文档,以及一些问题处理文档

img

img

现在可以开始对话,聊天窗口选择知识库,选中之前创建好的知识库,如本例为知识库

img

现在我提出了电子健康码启动的问题,看AI的答复能够正常的识别出步骤方法,并给出了引用文档,但是思考过程耗时过程,要184秒,个人感觉有点慢了

img

我继续提问一个工作中出现的错误,代码错误编码255901,基本可以根据文档里面的知识库给出相应的解决方案。

img

请求API需要收费,如果本地机器配置能够支撑大模型的话,可以通过配置本地模型

本地部署完成Ollama后,打开设置,选择模型服务Ollama,右侧开启服务

img

添加模型,模型ID输入deepseek-r1:1.5b(根据你本地下载的模型进行选择,部署Ollama本地时),这里下载的是deepseek-r1:1.5b

img

检测本地模型,点击检查,会弹出检测模型,选择相应的模型

img

打开对话窗口,选择模型服务,上面或者下面都可以选择对应的模型服务,选择Ollama,这里以deepseek-r1:1.5b为例

img

这里继续用代码错误编码255901这个问题进行提问,并需要选择对应的知识库

img

没有选择对应的知识库,会提示

img

测试了本地模型,反应速度慢并没有给出相应的解决方案,可能与下载的大模型有关,这里下载的是最小的1.5b模型,下载不同的模型会对机器的配置有不同的要求

img

我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4

但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!

❗️为什么你必须了解大模型?

1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍

2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰

3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI

(附深度求索BOSS招聘信息)
在这里插入图片描述

⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
在这里插入图片描述

服务器至强CPU天梯图是一种用于比较不同型号和性能的服务器处理器的工具。这个天梯图通常会列出各个不同型号的至强CPU,包括其核心数量、主频、缓存容量和功耗等性能参数。 通过查看服务器至强CPU天梯图,我们可以更好地了解到不同型号服务器处理器的性能差异。首先,我们可以比较各个处理器的核心数量,核心数量的增加意味着更多的并行处理能力,从而可以更高效地执行多线程任务。其次,我们可以关注主频,主频的提升表示处理器的计算速度更快,适用于对计算速度要求较高的应用场景。然后,我们还可以比较不同处理器的缓存容量,缓存容量的增加可以提高数据访问速度,从而提升整体性能。最后,功耗也是一个需要考虑的因素,较低的功耗会带来更高的能效和更低的运行成本。 通过服务器至强CPU天梯图,我们可以根据自己的需求选择合适的服务器处理器。对于对计算能力要求较高的任务,可以选择核心数量多、主频高的处理器。对于对数据访问速度要求较高的任务,可以选择缓存容量较大的处理器。而对于需要节省能源成本的应用场景,可以选择功耗较低的处理器。 总之,服务器至强CPU天梯图是一个比较不同型号服务器处理器性能的有用工具,通过参考这个天梯图,我们可以选择适合自己需求的服务器处理器,从而提升服务器性能并降低运行成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值