38、时间连续性原则在多媒体学习中的应用

时间连续性原则在多媒体学习中的应用

1. 时间连续性原则的定义

时间连续性原则指出,当相应的单词和图片同时呈现而不是连续呈现时,学生学得更好(Mayer,2009)。这一原则的核心在于,学习者需要在视觉和听觉工作记忆中同时处理相关信息,以建立有效的认知连接。具体来说,当学习者能够在视觉工作记忆中保留视觉表征,并在言语工作记忆中保留相应的言语表征时,可以促进显著的学习效果。这一原则在多媒体学习环境中尤为重要,因为多媒体学习通常涉及多种感官通道的信息输入。

2. 视觉和听觉通道的处理

多媒体学习的认知理论表明,学习者在处理视觉和听觉信息时,必须同时在视觉通道和听觉通道中进行。例如,当观看一个动画并听取旁白时,学习者的视觉工作记忆会处理动画中的图像,而听觉工作记忆会处理旁白中的言语信息。如果这些信息能够同时呈现,学习者可以在短时间内将两者结合起来,从而更好地理解学习内容。

然而,如果这些信息分隔开呈现,学习者需要在两个不同的时间点处理视觉和听觉信息,这可能会导致认知负荷增加。认知负荷是指学习者在处理信息时需要消耗的认知资源。如果认知负荷过高,学习者的理解效果会受到影响。因此,时间连续性原则强调,将相应的单词和图片同时呈现,可以减少认知负荷,提高学习效果。

3. 信息呈现方式对学习的影响

3.1 动画和旁白的同步呈现

研究表明,当动画和旁白同时呈现时,学习者的理解效果更好。例如,Mayer和Anderson(1991, 1992)的研究发现,当动画和旁白同步呈现时,学习者在转移测试中的表现优于那些暴露于顺序呈现的学习者。这意味着,当动画和旁白同时呈现时,学习者可以在短时间内将两者结合起来,从而更好

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性稳定性。此外,文档还列举了大量相关的科研方向技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值