目标检测——感受野的学习笔记

1 前言

感受野在目标检测任务中是一个十分重要的可解释性的内在参数,是很重要的,也具有很强的物理意义~

2 感受野的计算方法

已知:上一层特征图的感受野 R F l RF_{l} RFl,当前层卷积核的大小 k l + 1 k_{l+1} kl+1,以及之前所有卷积层的步长 s 1 , s 2 , … , s l s_1,s_2,\dots,s_l s1,s2,,sl,(其中这里的下标 l l l表示单词“layer”)
则感受野的计算公式为
R F l + 1 = R F l + ( k l + 1 − 1 ) ∗ ∏ i = 1 l s i R F 0 = 1 s 0 = 1 \begin{aligned} &RF_{l+1}=RF_{l} + (k_{l+1}-1)\ast \prod_{i=1}^{l}s_i\\ &RF_{0} = 1\\ &s_0 = 1 \end{aligned} RFl+1=RFl+(kl+11)i=1lsiRF0=1s0=1
也可以等价于下面的递推公式
R F l + 1 = R F l + ( k l + 1 − 1 ) E S l + 1 E S l + 1 = E S l + 1 ⋅ s l + 1 E S 0 = 1 \begin{aligned} &RF_{l+1}=RF_{l} + (k_{l+1}-1)ES_{l+1}\\ &ES_{l+1} = ES_{l+1} \cdot s_{l+1}\\ &ES_{0} = 1 \end{aligned} RFl+1=RFl+(kl+11)ESl+1ESl+1=ESl+1sl+1ES0=1

3 CNN感受野可视化

可以使用MLRichter/receptive_field_analysis_toolbox对CNN网络的感受野进行可视化;

3 备注

3.1 PyTorch官方实现的DeepLabV3中使用的ResNet101的感受野有1019

感觉还是挺厉害的;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值