【IEEE Transactions NNLS】DSAN: Deep Subdomain Adaptation Network for Image Classification译读笔记

笔记

摘要

对于标注数据难以获取的目标任务来说,域自适应能够将知识从一个不同的源域中将知识迁移过来。之前的深度域自适应方法主要学习全局域漂移,即在全局上对齐源分布和目标分布,而不考虑两个同类别不同域的子域之间的联系,导致没有捕获细粒度特征使得迁移效果不理想。近期,越来越来的研究者关注于子域自适应,即聚焦于更加准确地对齐相关联子域的分布。然而,其中大多数是对抗学习的方法,包含多个损失函数于是收敛缓慢。基于此,作者提出一种深度子域自适应网络(Deep Subdomain Adaptation Network, DSAN),学习一种对齐相关子域分布的网络,这里的子域分布来自不同域间域特定层的激活值,对齐方法采用LMMD(local maximum mean discrepancy)。所提出的DSAN非常简单但是效果良好,不需要使用对抗训练并且收敛快速。所提出的自适应方法可以在大多数前馈网络上通过使用LMMD损失容易地实现,从而通过反向传播高效地训练。实验证明DSAN在目标检测任务和数字分类任务上都取得了显著的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值