TorchNet的学习笔记

1 介绍

TorchNet是我在Torch官方文档(《TRAINING A CLASSIFIER》)里面看到的一个用于分类的网络模型,它收敛很快,给我留下了很深的印象;因为教程也没有给它起一个专有的名字,所以我就称它为TorchNet~

2 TorchNet的特点

2.1 Big Convolution Kernel

TorchNet的卷积层都使用了大的卷积核,其代码截图如下:
在这里插入图片描述
使用了大小为5的卷积核;

2.2 没有使用BN

TorchNet没有使用BN,其前向函数如下所示,
在这里插入图片描述
具体是什么原因,不太清楚,根据网上的资料显示“BN是有助于加快收敛的”,但是这里TorchNet没有使用BN,关于BN的效果还需要进一步的验证;

2.3 Head部分使用了多个FC层

TorchNet在Head部分使用了3个FC层,是Head部分具有很强的全局信息;

2.4 优化器使用SGD

这里TorchNet使用了SGD作为优化器,没有使用AdamW;

3 关于TorchNet的对比实验

在进行对比实验之前,首先我们对原始的TorchNet进行复现;[code]

3.1 两个 3 × 3 3\times3 3×3卷积代替 5 × 5 5\times5 5×5卷积

这里我们尝试使用2个 3 × 3 3\times3 3×3卷积代替 5 × 5 5\times5 5×5卷积;
结果如下:
在这里插入图片描述
可以看到两个 3 × 3 3\times3 3×3conv跟 5 × 5 5\times5 5×5conv的结果是类似的,所以我们可以尝试使用两个 3 × 3 3\times3 3×3卷积代替一个 5 × 5 5\times5 5×5卷积。

3.2 加上BN

加上BN的效果如下:
在这里插入图片描述
加上BN之后,好像也是有一点效果的;

3.3 多加一个FC,使用4个FC层

实验结果如下:
在这里插入图片描述
加了一个FC层,效果反而还下降了;

3.4 减少一个FC,使用2个FC层

前向运算的代码如下:
在这里插入图片描述
实验结果如图,
在这里插入图片描述
跟使用3个FC层的结果类似;

3.5 优化器换成AdamW

实验结果如下:
在这里插入图片描述
跟使用SGD的效果类似;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值