【JSTAR2022】《Few-Shot Transfer Learning for SAR Image Classification Without Extra SAR Samples》译读笔记

Few-Shot Transfer Learning for SAR Image Classification Without Extra SAR Samples

摘要

基于深度学习的合成孔径雷达(Synthetic Aperture Radar, SAR)图像分类在训练样本稀缺时是一个未解决的问题。基于迁移学习的 few-shot 方法通过将知识从EO(electro–optical)迁移到SAR域,可以有效地解决此问题。这类方法的性能依赖于额外的SAR样本,例如:未标注的新类别样本或者已标注的相似类样本。然而,在某些应用场景中收集足够额外的SAR样本是无法实现的,即 few-shot case。在这种case(情况)下,这类方法的性能会严重下降。因此,降低额外数据依赖的 few-shot 方法是至关重要。基于此动机,本文提出了一种新的 few-shot(小样本)迁移学习方法,用于SAR图像分类。本文提出了 connection-free attention module 来选择 transfer features(迁移特征),以选择性地从源网络向目标网络迁移EO和SAR样本之间的共享特征,从而补充由额外SAR样本带来的信息损失。基于Bayesian卷积神经网络,本文提出了一种用于 the extreme few-shot case 的训练策略,重点在于准确更新重要参数。在三个真实SAR数据集上的实验结果证明了本文方法的优越性。

I. 引言

SAR(Synthetic Aperture Radar)成像能够在遮挡天气或夜间通过传播雷达信号获益。来自移动天线的雷达信号和反射信号被收集起来进行后续信号处理,在任何气象条件和遮挡情况都可以生成高分辨率图像。因此,SAR成像作为一种强大的技术用于多种应用中,例如:连续环境监测、大规模监视、地球遥感和军事调查。图像分类则是这些应用中的基本任务之一。
  随着大量带标注训练样本的出现,DL成为了SAR图像分类流行且有效的解决方案。然而,由于收集的困难,在某些应用场景中,我们只能获得少量关注目标的标注SAR样本。在这种情况下,该问题需要通过 few-shot learning 来进行研究,即用每类少于20个的标注SAR样本来训练网络。现有的 few-shot learning(小样本学习)方法主要分为两类。
  1)基于迁移学习( Transfer Learning-based, TL-based)的方法,这些方法通过额外的相似SAR样本在EO域和SAR域之间匹配特征。例如,Rostami等人[3_Deep_Transfer_Learning]提出了最小化未标注SAR样本和EO样本两者特征分布之间的距离,然后用少量标注SAR样本微调网络。这种方法的性能依赖于额外的未标注SAR样本,这些样本需要与测试样本属于相似的类别。
  2)基于元学习的方法,这些方法从相似的标注SAR样本中学习,而不使用EO样本。例如,Wang等人[4_Few_Shot_SAR]在网络微调之前,使用MSTAR数据集中七个支持类别的数百个标注样本预训练网络,然后用三个目标类别的少量标注样本进行微调。然而,这些方法需要大量的额外标注SAR样本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值