透过皮亚诺公理看自然数

透过皮亚诺公理看自然数

皮亚诺公理

  1. 0是自然数

  2. 每一个确定的自然数 a a a都有后继数,记作 a ′ a' a,后继数 a ′ a' a也是自然数。(数 a a a的后继数就是紧挨着 a a a的一个整数,即 a ′ = a + 1 a' = a + 1 a=a+1

  3. 0不是任何自然数的后继数

  4. 不同的自然数有不同的后继数,如果自然数 b b b c c c的后继数都是自然数 a a a,那么 b = c b = c b=c

  5. 数学归纳法:设法则 P ( n ) P(n) P(n)是关于自然数 n n n的法则,若 P ( 0 ) P(0) P(0)成立,且假设 P ( N ) P(N) P(N)成立时可推得 P ( N ′ ) P(N') P(N)成立(或称 P ( N + 1 ) P(N+1) P(N+1)成立),则 P P P对全体自然数都成立。

    如,已经直到 P ( N ) P(N) P(N) P ( 0 ) P(0) P(0)成立,且当 P ( N ) P(N) P(N)成立时 P ( N ′ ) P(N') P(N)成立,要证明 P ( 3 ) P(3) P(3)成立,可以根据如下步骤递归:

    1. P ( 3 ) P(3) P(3)成立即证明 P ( 2 ) P(2) P(2)成立,因为当 P ( N ) P(N) P(N)成立时, P ( N ′ ) P(N') P(N)成立
    2. P ( 2 ) P(2) P(2)成立即 P ( 1 ) P(1) P(1)成立
    3. P ( 1 ) P(1) P(1)成立即 P ( 0 ) P(0) P(0)成立,而我们已经事先证明了 P ( 0 ) P(0) P(0)成立,因此可证 P ( 3 ) P(3) P(3)成立。

    下面的论证多使用数学归纳法。

加法的定义

定义

我们定义,加法是满足以下两种规则的运算

  • ∀ m ∈ N \forall m∈N mN 0 + m = m 0 + m = m 0+m=m

  • ∀ m , n ∈ N \forall m,n∈N m,nN n ′ + m = ( n + m ) ′ n' + m = (n + m)' n+m=(n+m)

比如说: 3 + 2 = ( 3 + 1 ) ′ = ( 3 + 1 ) ′ = ( ( 3 + 0 ) ′ ′ = 3 ′ ′ = 5 3 + 2 = (3 + 1)' = (3 + 1)' = ((3 + 0)'' = 3'' = 5 3+2=(3+1)=(3+1)=((3+0)=3=5

注:以后在“(自然数)皮亚诺公理”的讨论中, m m m n n n特指自然数

推论
a. 1 + 1 = 2 1 + 1 = 2 1+1=2

1 + 1 = 0 ′ + 1 = ( 0 + 1 ) ′ = 1 ′ = 2 1 + 1 = 0' + 1 = (0 + 1)' = 1' = 2 1+1=0+1=(0+1)=1=2


b. 加法结合律

∀ a , b , c ∈ N ∀a,b,c∈N a,b,cN满足:
( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c)


证明过程使用数学归纳法

第一步

a = 0 a = 0 a=0,则:
( a + b ) + c = ( 0 + b ) + c = b + c = 0 + ( b + c ) (a + b) + c = (0 + b) + c = b + c = 0 + (b + c) (a+b)+c=(0+b)+c=b+c=0+(b+c)
0 + b = b 0 + b = b 0+b=b根据加法的定义可以得到, 0 + ( b + c ) 0 + (b + c) 0+(b+c)根据加法的定义得到。

第二步

假设有自然数 k k k(注:以后在“(自然数)皮亚诺公理”的讨论中,凡是使用数学归纳法证明中的 k k k均指自然数),使 a = k a = k a=k,满足 ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c)

则,当 a = k ′ a = k' a=k时:
( a + b ) + c = ( k ′ + b ) + c = ( k + b ) ′ + c = ( ( k + b ) + c ) ′ = ( k + ( b + c ) ) ′ = k ′ + ( b + c ) = a + ( b + c ) (a+b)+c = (k' + b) + c = (k + b)' + c = ((k + b) + c)' = (k + (b + c))' = k' + (b + c) = a + (b + c) (a+b)+c=(k+b)+c=(k+b)+c=((k+b)+c)=(k+(b+c))=k+(b+c)=a+(b+c)
当然,从 ( k + ( b + c ) ) ′ (k + (b + c))' (k+(b+c))我们可以得到 k ′ + ( b + c ) k' + (b + c) k+(b+c)也可以得到 k + ( b + c ) ′ k + (b + c)' k+(b+c),但 k ′ + ( b + c ) k' + (b + c) k+(b+c)更有利于证明过程。


c. m ’ = 1 + m m’ = 1 + m m=1+m

前面,我们是规定了 m ′ = m + 1 m' = m + 1 m=m+1,现在来证明 m ′ = 1 + m m' = 1 + m m=1+m

第一步

m = 0 m = 0 m=0,则:
1 + m = 1 + 0 = 0 ′ + 0 = ( 0 + 0 ) ′ = 0 ′ = m ′ 1 + m = 1 + 0 = 0' + 0 = (0 + 0)' = 0' = m' 1+m=1+0=0+0=(0+0)=0=m
第二步

假设 m = k m = k m=k时, m ′ = 1 + m m' = 1 + m m=1+m成立,则当 m = k ′ m = k' m=k时:
1 + m = 1 + k ′ = ( 1 + k ) ′ = ( k ′ ) ′ = m ′ 1 + m = 1 + k' = (1 + k)' = (k')' = m' 1+m=1+k=(1+k)=(k)=m


d. m = m + 0 m = m + 0 m=m+0

第一步

m = 0 m = 0 m=0,则:
m + 0 = 0 + 0 = 0 + m = m m + 0 = 0 + 0 = 0 + m = m m+0=0+0=0+m=m
第二步

假设 m = k m = k m=k时, m ′ = m + 0 m' = m + 0 m=m+0成立,则当 m = k ′ m = k' m=k时:
m + 0 = k ′ + 0 = ( k + 0 ) ′ = k ′ = m m + 0 = k' + 0 = (k + 0)' = k' = m m+0=k+0=(k+0)=k=m


e.加法交换律

结合上面cd的证明,可以得到加法交换律。

∀ a , b ∈ N ∀a,b∈N a,bN满足:
a + b = b + a a + b = b + a a+b=b+a


第一步

a = 0 a = 0 a=0,则:
a + b = 0 + b = b = b + 0 = b + a a + b = 0 + b = b = b + 0 = b + a a+b=0+b=b=b+0=b+a
其中, b = b + 0 b = b + 0 b=b+0就是使用了上面d的证明

第二步

假设 a = k a = k a=k时, a + b = b + a a + b = b + a a+b=b+a成立,则当 a = k ′ a = k' a=k时:
a + b = k ′ + b = ( k + b ) ′ = ( b + k ) ′ = b + k ′ = b + a a + b = k' + b = (k + b)' = (b + k)' = b + k' = b + a a+b=k+b=(k+b)=(b+k)=b+k=b+a


f.加法消去律

∀ a , b , c ∈ N ∀a,b,c∈N a,b,cN满足:
a + c = b + c ⇔ a = b a + c = b + c \Leftrightarrow a = b a+c=b+ca=b


第一步

c = 0 c = 0 c=0,则:
a + c = b + c ⇔ a + 0 = b + 0 ⇔ a = b a + c = b + c \Leftrightarrow a + 0 = b + 0 \Leftrightarrow a = b a+c=b+ca+0=b+0a=b
第二步

c = k c = k c=k时, a + c = b + c ⇔ a = b a + c = b + c \Leftrightarrow a = b a+c=b+ca=b,则当 c = k ′ c = k' c=k时:
a + c = b + c ⇔ a + k ′ = b + k ′ ⇔ ( a + k ) ′ = ( b + k ) ′ ⇔ a + k = b + k ⇔ a = b a + c = b + c \Leftrightarrow a + k' = b + k' \Leftrightarrow (a + k)' = (b + k)' \Leftrightarrow a + k = b + k \Leftrightarrow a = b a+c=b+ca+k=b+k(a+k)=(b+k)a+k=b+ka=b
其中, ( a + k ) ′ = ( b + k ) ′ ⇔ a + k = b + k (a + k)' = (b + k)' \Leftrightarrow a + k = b + k (a+k)=(b+k)a+k=b+k运用了公理四, a + k = b + k ⇔ a = b a + k = b + k \Leftrightarrow a = b a+k=b+ka=b由数学归纳可得。

乘法的定义

定义

我们定义,乘法是满足以下两种规则的运算

  • ∀ m ∈ N \forall m∈N mN m × 0 = 0 m \times 0 = 0 m×0=0

  • ∀ m , n ∈ N \forall m,n∈N m,nN m × n ′ = m × n + m m \times n' = m \times n + m m×n=m×n+m

比如说: 3 × 2 = 2 ′ × 2 = 2 × 2 + 2 = ( 1 × 2 + 2 ) + 2 = ( ( 0 × 2 + 2 ) + 2 ) + 2 = 0 + 2 + 2 + 2 = 6 3 \times 2 = 2' \times 2 = 2 \times 2 + 2 = (1 \times 2 + 2) + 2 = ((0 \times 2 + 2) + 2) + 2 = 0 + 2 + 2 + 2 = 6 3×2=2×2=2×2+2=(1×2+2)+2=((0×2+2)+2)+2=0+2+2+2=6

推论
a. 乘法分配律

∀ a , b , c ∈ N ∀a,b,c∈N a,b,cN满足:
a × ( b + c ) = a × b + a × c a\times (b + c) = a \times b+ a \times c a×(b+c)=a×b+a×c


第一步

b = 0 b = 0 b=0,则:
a × ( b + c ) = a × ( 0 + c ) = a × c = 0 + a × c = a × 0 + a × c = a × b + a × c a \times (b + c) = a \times (0 + c) = a \times c = 0 + a \times c = a \times 0 + a \times c = a \times b + a \times c a×(b+c)=a×(0+c)=a×c=0+a×c=a×0+a×c=a×b+a×c
第二步

假设 b = k b = k b=k时, a × ( b + c ) = a × b + a × c a\times (b + c)=a \times b+ a \times c a×(b+c)=a×b+a×c成立,则当 b = k ′ b = k' b=k时:
a × ( b + c ) = a × ( k ′ + c ) = a × ( k + c ) ′ = a × ( k + c ) + a = a × k + a × c + a a \times (b + c) = a \times (k' + c) = a \times (k + c)' = a \times (k + c) + a = a \times k + a \times c + a a×(b+c)=a×(k+c)=a×(k+c)=a×(k+c)+a=a×k+a×c+a
在根据加法结合律和交换律可以得到:
a × k + a × c + a = a × k + ( a × c + a ) = a × k + ( a + a × c ) = ( a × b + a ) + a × c = a × k ′ + a × c = a × b + a × c a \times k + a \times c + a = a \times k + (a \times c + a) = a \times k + (a + a \times c) = (a \times b + a) + a \times c = a \times k' + a \times c = a \times b + a \times c a×k+a×c+a=a×k+(a×c+a)=a×k+(a+a×c)=(a×b+a)+a×c=a×k+a×c=a×b+a×c


b. 0 × m = 0 0 \times m = 0 0×m=0

第一步

m = 0 m = 0 m=0,则:
0 × m = 0 × 0 = m × 0 = 0 0 \times m = 0 \times 0 = m \times 0 = 0 0×m=0×0=m×0=0
第二步

假设 m = k m = k m=k时, 0 × m = 0 0 \times m = 0 0×m=0成立,则当 m = k ′ m = k' m=k时:
0 × k ′ = 0 × k + 0 = 0 + 0 = 0 0 \times k' = 0 \times k + 0 = 0 + 0 = 0 0×k=0×k+0=0+0=0


c. n ′ × m = n × m + m n' \times m = n \times m + m n×m=n×m+m

第一步

m = 0 m = 0 m=0,则:
n ′ × m = 0 n' \times m = 0 n×m=0
因为:
n × 0 = 0 = 0 + 0 = n × 0 + 0 n \times 0 = 0 = 0 + 0 = n \times 0 + 0 n×0=0=0+0=n×0+0
所以:
n ′ × m = 0 = n × 0 + 0 = n × m + m n' \times m = 0 = n \times 0 + 0 = n \times m + m n×m=0=n×0+0=n×m+m
第二步

假设 m = k m = k m=k时, n ′ × m = n × m + m n' \times m = n \times m + m n×m=n×m+m成立,则当 m = k ′ m = k' m=k时:
n ′ × m = n ′ × k ′ = n ′ × k + n ′ = ( n × k + k ) + n ′ = ( n × k + k ) + ( n + 1 ) = n × k + k + n + 1 n' \times m = n' \times k' = n' \times k + n' = (n \times k + k) + n' = (n \times k + k) + (n + 1) = n \times k + k + n + 1 n×m=n×k=n×k+n=(n×k+k)+n=(n×k+k)+(n+1)=n×k+k+n+1
根据加法交换律,可以得到:
n × k + k + n + 1 = n × k + n + k + 1 = ( n × k + n ) + ( k + 1 ) = n × k ′ + k ′ = n × m + m n \times k + k + n + 1 = n \times k + n + k + 1 = (n \times k + n) + (k + 1) = n \times k' + k' = n \times m + m n×k+k+n+1=n×k+n+k+1=(n×k+n)+(k+1)=n×k+k=n×m+m


d. 乘法交换律

∀ a , b ∈ N ∀a,b∈N a,bN满足:
a × b = b × a a \times b = b \times a a×b=b×a


第一步

a = 0 a = 0 a=0,则:
a × b = 0 × b = 0 = b × 0 = b × a a \times b = 0 \times b = 0 = b \times 0 = b \times a a×b=0×b=0=b×0=b×a
第二步

假设 a = k a = k a=k时, a × b = b × a a \times b = b \times a a×b=b×a成立,则当 a = k ′ a = k' a=k时:
a × b = k ′ × b = k × b + b = b × k + k = b × k ′ = b × a a \times b = k' \times b = k \times b + b = b \times k + k = b \times k' = b \times a a×b=k×b=k×b+b=b×k+k=b×k=b×a


e. 乘法结合律

∀ a , b , c ∈ N ∀a,b,c∈N a,b,cN满足:
( a × b ) × c = a × ( b × c ) (a \times b) \times c = a \times (b \times c) (a×b)×c=a×(b×c)


第一步

a = 0 a = 0 a=0,令 h = b × c h = b \times c h=b×c,则:
( a × b ) × c = ( 0 × b ) × c = 0 × c = 0 a × ( b × c ) = 0 × h = 0 (a \times b) \times c = (0 \times b)\times c = 0 \times c = 0\\ a \times (b \times c) = 0 \times h = 0 (a×b)×c=(0×b)×c=0×c=0a×(b×c)=0×h=0
所以:
( a × b ) × c = a × ( b × c ) = 0 (a \times b)\times c = a \times (b \times c) = 0 (a×b)×c=a×(b×c)=0
第二步

假设 a = k a = k a=k时, ( a × b ) × c = a × ( b × c ) (a \times b)\times c = a \times (b \times c) (a×b)×c=a×(b×c)成立,则当 a = k ′ a = k' a=k时:
( a × b ) × c = ( k ′ × b ) × c = ( k × b + b ) × c = ( k × b ) × c + ( b × c ) = k × ( b × c ) + ( b × c ) a × ( b × c ) = k ′ × ( b × c ) = k × ( b × c ) + ( b × c ) (a \times b) \times c = (k' \times b) \times c = (k \times b + b) \times c = (k \times b)\times c + (b \times c) = k \times (b \times c) + (b \times c)\\ a \times (b \times c) = k' \times (b \times c) = k \times (b \times c) + (b \times c) (a×b)×c=(k×b)×c=(k×b+b)×c=(k×b)×c+(b×c)=k×(b×c)+(b×c)a×(b×c)=k×(b×c)=k×(b×c)+(b×c)
所以:
( a × b ) × c = a × ( b × c ) (a \times b )\times c = a \times (b \times c) (a×b)×c=a×(b×c)


f. n × m = 0 n \times m = 0 n×m=0 m m m n n n中有且至少有一个为 0 0 0

m m m n n n都不为零,则必然存在自然数 a a a b b b m m m n n n的后继数,即:
m = a ′ = a + 1 n = b ′ = b + 1 m = a' = a + 1\\ n = b' = b + 1 m=a=a+1n=b=b+1
所以:
n × m = ( a ′ ) × b ′ = a × b ′ + b ′ = a × b + a + b ′ = a × b + a + n n \times m = (a')\times b' = a \times b' + b' = a \times b + a + b' = a \times b + a + n n×m=(a)×b=a×b+b=a×b+a+b=a×b+a+n
很显然,当 m m m n n n不为0的时候 a × b + a + n a \times b + a + n a×b+a+n也不为0。因此 m × n = 0 m \times n = 0 m×n=0 m m m n n n中至少有一个为 0 0 0

m m m n n n有一个是0或都是0,则上述推论不成立,因为0不是任何自然数的后继数。然后,根据乘法的性质可推出 m × n = 0 m \times n = 0 m×n=0


g. 乘法消去律

注:推导乘法消去律涉及自然数的序和正自然数的一些推论和定义

∀ a , b ∈ N ∀a,b∈N a,bN c ∈ N + c∈N^+ cN+满足:
a × c = b × c ⇔ a = b a\times c = b\times c \Leftrightarrow a = b a×c=b×ca=b


推动过程使用反证法

已知 a × c = b × c a \times c = b \times c a×c=b×c,若:

a > b a \gt b a>b,则:
a = b + m ⇔ a × c = b × c = ( b + m ) × c ⇔ b × c = b × c + m × c a = b + m \Leftrightarrow a \times c = b \times c = (b + m) \times c \Leftrightarrow b \times c = b \times c + m \times c a=b+ma×c=b×c=(b+m)×cb×c=b×c+m×c
根据上面可得: m × c = 0 m \times c = 0 m×c=0,而 m m m c c c都不为0,因此矛盾。

同理可证 a < b a \lt b a<b也是矛盾的,根据自然数的序的三歧性,可得: a = b a = b a=b

正自然数

定义:不是0的自然数叫正自然数

推论
a.自然数和正自然数相加结果为正自然数

∀ a ∈ N ∀a∈N aN b , c ∈ N + b,c∈N^+ b,cN+满足:
a + b = c a + b = c a+b=c


第一步

a = 0 a = 0 a=0,则:
a + b = 0 + b = b = c a + b = 0 + b = b = c a+b=0+b=b=c
b b b c c c都是正自然数,上述推导成立。

第二步

假设 a = k a = k a=k时, a + b = c a + b = c a+b=c成立,当 a = k ′ a = k' a=k时:
a + b = k ′ + b = ( k + b ) ′ = c a + b = k' + b = (k + b)' = c a+b=k+b=(k+b)=c
因为 k + b k + b k+b是正自然数(即不是0),则 ( k + b ) ′ (k + b)' (k+b)也是正自然数(0不是任何自然数的后继数)。

自然数的序

m ≥ n m \ge n mn(或 n ≤ m n \le m nm),当且仅当存在自然数 a a a使得 m = n + a m = n + a m=n+a。称 m > n m \gt n m>n(或 n < m n \lt m n<m),当且仅当 m ≥ n m \ge n mn(或 n ≤ m n \le m nm),且 m ≠ n m \ne n m=n

推论

注:下推论默认 ∀ a , b , c ∈ N ∀a,b,c∈N a,b,cN

a. a ≥ a ⇔ a = 0 + a a \ge a \Leftrightarrow a = 0 + a aaa=0+a

a ≥ a ⇔ a = a + m ⇔ a = a + 0 a \ge a \Leftrightarrow a = a + m \Leftrightarrow a = a + 0 aaa=a+ma=a+0


b. a ≥ b , b ≥ c ⇔ a ≥ c a \ge b, b \ge c \Leftrightarrow a \ge c ab,bcac

a ≥ b , b ≥ c a \ge b, b \ge c ab,bc,可得:
a = b + m 0 b = c + m 1 a = b + m_0\\ b = c + m_1 a=b+m0b=c+m1
其中 m 1 m_1 m1 m 0 m_0 m0都是自然数

因此:
a = c + m 1 + m 0 ⇔ a = c + ( m 0 + m 1 ) a = c + m_1 + m_0 \Leftrightarrow a = c + (m_0 + m_1) a=c+m1+m0a=c+(m0+m1)
令自然数 m = m 0 + m 1 m = m_0 + m_1 m=m0+m1,则:
a = c + m ⇔ a ≥ c a = c + m \Leftrightarrow a \ge c a=c+mac


c. a ≥ b , b ≥ a ⇔ a = b a \ge b, b \ge a \Leftrightarrow a = b ab,baa=b

a ≥ b , b ≥ a a \ge b, b \ge a ab,ba,可得:
a = b + m 0 b = a + m 1 a = b + m_0\\ b = a + m_1 a=b+m0b=a+m1
其中 m 1 m_1 m1 m 0 m_0 m0都是自然数

因此:
a = ( a + m 1 ) + m 0 = a + ( m 1 + m 0 ) = a + 0 a = (a + m_1) + m_0 = a + (m_1 + m_0) = a + 0 a=(a+m1)+m0=a+(m1+m0)=a+0
根据加法消去律和交换律可得:
m 1 + m 0 = 0 m_1 + m_0 = 0 m1+m0=0
因为自然数和正自然数相加结果为正自然数,所以 m 1 m_1 m1 m 0 m_0 m0均不是正自然数,即: m 1 = m 0 = 0 m_1 = m_0 = 0 m1=m0=0

根据 a = b + m 0 a = b + m_0 a=b+m0,可得:
a = b + 0 ⇔ a = b a = b + 0 \Leftrightarrow a = b a=b+0a=b


d. a ≥ b ⇔ a ′ ≥ b ′ a \ge b \Leftrightarrow a' \ge b' abab

第一步

b = 0 b = 0 b=0,则:
a ≥ b ⇔ a ≥ 0 ⇔ a = 0 + m ⇔ a ′ = ( 0 + m ) ′ ⇔ a ′ = 0 ′ + m ⇔ a ′ ≥ 0 ′ = a ≥ b ′ a \ge b \Leftrightarrow a \ge 0 \Leftrightarrow a = 0 + m \Leftrightarrow a' = (0 + m)' \Leftrightarrow a' = 0' + m \Leftrightarrow a' \ge 0' = a \ge b' aba0a=0+ma=(0+m)a=0+ma0=ab
其中, a = 0 + m ⇔ a ′ = ( 0 + m ) ′ a = 0 + m \Leftrightarrow a' = (0 + m)' a=0+ma=(0+m)根据公理三推出。

第二步

b = k b = k b=k时, a ≥ b ⇔ a ′ ≥ b ′ a \ge b \Leftrightarrow a' \ge b' abab成立,则 b = k ′ b = k' b=k时:
a ≥ b ⇔ a ≥ k ′ ⇔ a = k ′ + m ⇔ a = ( k + m ) ′ ⇔ a ′ = ( k + m ) ′ ′ ⇔ a ′ = k ′ ′ + m ⇔ a ′ ≥ k ′ ′ ⇔ a ′ ≥ b ′ a \ge b \Leftrightarrow a \ge k' \Leftrightarrow a = k' + m \Leftrightarrow a = (k + m)' \Leftrightarrow a' = (k + m)'' \Leftrightarrow a' = k'' + m \Leftrightarrow a' \ge k'' \Leftrightarrow a' \ge b' abaka=k+ma=(k+m)a=(k+m)a=k+makab


e. a ≥ b ⇔ a + c ≥ b + c a \ge b \Leftrightarrow a + c \ge b + c aba+cb+c

第一步

c = 0 c = 0 c=0时,则有:
a + c ≥ b + c ⇔ a + 0 ≥ b + 0 ⇔ a ≥ b a + c \ge b + c \Leftrightarrow a + 0 \ge b + 0 \Leftrightarrow a \ge b a+cb+ca+0b+0ab
第二步

c = k c = k c=k时, a ≥ b ⇔ a + c ≥ b + c a \ge b \Leftrightarrow a + c \ge b + c aba+cb+c成立,则 c = k ′ c = k' c=k时:
a + c ≥ b + c ⇔ a + k ′ ≥ b + k ′ ⇔ ( a + k ) ′ ≥ ( b + k ) ′ ⇔ a + k ≥ b + k ⇔ a ≥ b a + c \ge b + c \Leftrightarrow a + k' \ge b + k' \Leftrightarrow (a + k)' \ge (b + k)' \Leftrightarrow a + k \ge b + k \Leftrightarrow a \ge b a+cb+ca+kb+k(a+k)(b+k)a+kb+kab


f.当 ∀ a , b ∈ N ∀a,b∈N a,bN c ∈ N + c∈N^+ cN+, 有 a > b ⇔ a = b + c a \gt b \Leftrightarrow a = b + c a>ba=b+c

根据 a > b a \gt b a>b,可得:
a = b + c a ≠ b a = b + c\\ a \ne b a=b+ca=b
c = 0 c = 0 c=0,则:
a = b + c ⇔ a = b + 0 ⇔ a = b a = b + c \Leftrightarrow a = b + 0 \Leftrightarrow a = b a=b+ca=b+0a=b
可见,若 c = 0 c = 0 c=0会出现冲突( a = b a = b a=b a ≠ b a \ne b a=b的冲突),因此 c ≠ 0 c \ne 0 c=0

因为 c c c是自然数,且 c ≠ 0 c \ne 0 c=0,因此 c c c是正自然数,即 c ∈ N + c ∈N^+ cN+


g. a ≥ b ⇔ a ′ > b a \ge b \Leftrightarrow a' \gt b aba>b

根据 a ≥ b a \ge b ab,则有:
a ≥ b ⇔ a = b + m ⇔ a ′ = ( b + m ) ′ ⇔ a ′ = b + m ′ ⇔ a ′ ≥ b a \ge b \Leftrightarrow a = b + m \Leftrightarrow a' = (b + m)' \Leftrightarrow a' = b + m' \Leftrightarrow a' \ge b aba=b+ma=(b+m)a=b+mab
其中, m ′ ≠ 0 m' \ne 0 m=0,因为 0 0 0不是任何数的后继数,则: a ≠ b a \ne b a=b,因此:
a ′ = b + m ′ ⇔ a ≥ b ⇔ a > b a' = b + m' \Leftrightarrow a \ge b \Leftrightarrow a \gt b a=b+maba>b

h.当 ∀ a , b ∈ N ∀a,b∈N a,bN c ∈ N + c∈N^+ cN+, 有 a ≥ b ⇔ a × c ≥ b × c a \ge b \Leftrightarrow a \times c \ge b \times c aba×cb×c

根据 a > b a \gt b a>b,可得:
a = b + c ⇔ a × c = b × c + m × c ⇔ a × c ≥ b × c a = b + c \Leftrightarrow a \times c = b \times c + m \times c \Leftrightarrow a \times c \ge b \times c a=b+ca×c=b×c+m×ca×cb×c

i.自然数的序的三歧性

即,任意自然数 a a a b b b,对下面命题:

  • a = b a = b a=b
  • a > b a \gt b a>b
  • a < b a \lt b a<b

都有且只有一个是成立的。


证明三者只有一个成立
a = b ⇔ a + 0 = b ⇔ a = b + 0 a > b ⇔ a = b + m a < b ⇔ b = a + n a = b \Leftrightarrow a + 0 = b \Leftrightarrow a = b + 0\\ a \gt b \Leftrightarrow a = b + m\\ a \lt b \Leftrightarrow b = a + n a=ba+0=ba=b+0a>ba=b+ma<bb=a+n
其中, n n n m m m均为正自然数。

a = b a = b a=b a > b a \gt b a>b同时成立,则:
a = b + 0 a = b + m a = b + 0\\ a = b + m a=b+0a=b+m
即:
b + 0 = b + m b + 0 = b + m b+0=b+m
根据加法消去律可得 m = 0 m = 0 m=0,因为 m m m是正自然数,因此 a = b a = b a=b a ≥ b a \ge b ab矛盾

a = b a = b a=b a < b a \lt b a<b同时成立,则:
a + 0 = b b = a + n a + 0 = b\\ b = a + n a+0=bb=a+n
即:
a + 0 = a + n a + 0 = a + n a+0=a+n
根据加法消去律可得 n = 0 n = 0 n=0,结果矛盾

a > b a \gt b a>b a < b a \lt b a<b同时成立,则:
a = b + m b = a + n a = b + m\\ b = a + n a=b+mb=a+n
即:
a = b + m = a + n + m = a + ( n + m ) a = b + m = a + n + m = a + (n + m) a=b+m=a+n+m=a+(n+m)
因为:
a = a + 0 a = a + 0 a=a+0
所以:
n + m = 0 n + m = 0 n+m=0
因为自然数和正自然数相加结果为正自然数,所以 m = n = 0 m = n = 0 m=n=0,矛盾。


证明三者有一个成立

第一步

b = 0 b = 0 b=0,则 a a a b b b的有序关系是:
a = 0 + a ⇔ a = b + a ⇔ a ≥ b a = 0 + a \Leftrightarrow a = b + a \Leftrightarrow a \ge b a=0+aa=b+aab
其中, a ≥ b a \ge b ab即:
a > b a \gt b a>b

a = b a = b a=b
第二步

假设, a a a b b b,在 b = k b=k b=k时,存在有序关系 a = b a = b a=b a > b a \gt b a>b a < b a \lt b a<b,当 b = k ′ b = k' b=k时则:

b = k b = k b=k时, a = b a = b a=b成立,则当 b = k ′ b = k' b=k时:
a = k ⇔ a + 1 = k ′ ⇔ a + 1 = b ⇔ a < b a = k \Leftrightarrow a + 1 = k' \Leftrightarrow a + 1 = b \Leftrightarrow a \lt b a=ka+1=ka+1=ba<b
b = k b = k b=k时, a > b a \gt b a>b成立,则当 b = k ′ b = k' b=k时:
a > k ⇔ a = k + m ⇔ a ′ = ( k + m ) ′ ⇔ a ′ = k ′ + m ⇔ a ′ > b ⇔ a ≥ b a \gt k \Leftrightarrow a = k + m \Leftrightarrow a' = (k + m)' \Leftrightarrow a' = k' + m \Leftrightarrow a' \gt b \Leftrightarrow a \ge b a>ka=k+ma=(k+m)a=k+ma>bab
其中, a ≥ b a \ge b ab即:
a > b a \gt b a>b

a = b a = b a=b
b = k b = k b=k时, a < b a \lt b a<b成立,则当 b = k ′ b = k' b=k时:
a < k ⇔ a < k ′ ⇔ a < b a \lt k \Leftrightarrow a \lt k' \Leftrightarrow a \lt b a<ka<ka<b


第二数学归纳法

设法则 P ( m ) P(m) P(m)是关于自然数 m m m的法则,其满足一下两个命题:

  1. 对于有自然数 m 0 m_0 m0满足 m 0 ≤ m m_0 \le m m0m,有 P ( m 0 ) P(m_0) P(m0)成立
  2. 对于自然数 m 1 m_1 m1满足 m 0 ≤ m 1 ≤ m m_0 \le m_1 \le m m0m1m,假设 P ( m 1 ) P(m_1) P(m1)成立可以,推导 P ( m + 1 ) P(m + 1) P(m+1)成立

则法则 P ( m ) P(m) P(m)对一切大于或等于 m 0 m_0 m0的自然数(即 m ≥ m 0 m \ge m_0 mm0)都成立。

证明

根据 m 0 ≤ m m_0 \le m m0m,可以得到:
m = m 0 + k ⇔ m 0 ≤ m 1 ≤ m 0 + k m = m_0 + k \Leftrightarrow m_0 \le m_1 \le m_0 + k m=m0+km0m1m0+k
设法则 S S S为:
S ( k ) = P ( m 1 ) S(k) = P(m_1) S(k)=P(m1)
首先,我们知道 P ( m 0 ) P(m_0) P(m0)成立,也就是 S ( 0 ) S(0) S(0)成立。 m = m 0 m = m_0 m=m0时, k = 0 k=0 k=0

根据假设 P ( m 1 ) P(m_1) P(m1)成立可以,推导 P ( m + 1 ) P(m + 1) P(m+1)成立,即根据 S ( k ) S(k) S(k)成立推出 S ( k + 1 ) S(k + 1) S(k+1)成立,根据数学归纳法可得到 S ( k ) S(k) S(k)对一切自然数 k k k成立。

因此, P ( m ) P(m) P(m)对一切大于 m 0 m_0 m0的自然数都成立。

注:公理五的数学归纳法又称为第一数学归纳法。广义的数学归纳法指:第一和第二数学归纳法;狭义的数学归纳法指:第一数学归纳法。我们常说的是狭义的数学归纳法。

倒向数学归纳法

设法则 P ( m ) P(m) P(m)是关于自然数 m m m的法则,其满足一下两个命题:

  1. 对于自然数 m 0 m_0 m0,有 P ( m 0 ) P(m_0) P(m0)成立
  2. 假设 P ( m ′ ) P(m') P(m)成立可以推导得到 P ( m ) P(m) P(m)成立

则法则 P ( m ) P(m) P(m)对一切小于或等于 m 0 m_0 m0的自然数(即 m ≤ m 0 m \le m_0 mm0)都成立。

其本质其实就是倒过来的数学归纳法,对一切 P ( m ) P(m) P(m)的证明,最终都可以归纳成 P ( n ) P(n) P(n)

证明:当 ∀ n , a , b ∈ N ∀n,a,b∈N n,a,bN q ∈ N + q∈N^+ qN+,总有 n ≤ b < q n \le b \lt q nb<q n = a × q + b n = a\times q + b n=a×q+b

第一步

n = 0 n = 0 n=0,显然当 a = b = 0 a = b = 0 a=b=0时, n = a × q + b n = a\times q + b n=a×q+b成立。

第二步

n = k n = k n=k时, n = a q + b n = aq + b n=aq+b成立,此时的 a a a记作 a 1 a_1 a1,此时的 b b b记作 b 1 b_1 b1,当 n = k ′ = k + 1 n = k' = k + 1 n=k=k+1时,则:

  1. b + 1 < q b + 1 \lt q b+1<q,则:
    n = k ′ = k + 1 = ( a 1 × q + b 1 ) + 1 = a 1 × q + ( b 1 + 1 ) = a 1 × q + b 1 ′ n = k' = k + 1 = (a_1\times q + b_1) + 1 = a_1\times q + (b_1 + 1) = a_1\times q + {b_1}' n=k=k+1=(a1×q+b1)+1=a1×q+(b1+1)=a1×q+b1
    即:
    a = a 1 b = b 1 ′ a = a_1\\ b = {b_1}' a=a1b=b1

  2. b + 1 = q b + 1 = q b+1=q,则:
    n = k ′ = k + 1 = ( a 1 × q + b 1 ) + 1 = a 1 × q + ( b 1 + 1 ) = a 1 × q + q = ( a 1 + 1 ) q = a 1 ′ × q n = k' = k + 1 = (a_1\times q + b_1) + 1 = a_1\times q + (b_1 + 1) = a_1\times q + q = (a_1 + 1)q = {a_1}'\times q n=k=k+1=(a1×q+b1)+1=a1×q+(b1+1)=a1×q+q=(a1+1)q=a1×q
    即:
    a = a 1 ′ b = 0 a = {a_1}'\\ b = 0 a=a1b=0

  3. b + 1 > q b + 1 \gt q b+1>q,这种情况不存在。

对于上述研究,可以表述为:

对于任意自然数 a a a b b b,若满足: 0 < b < a 0 \lt b \lt a 0<b<a,总有自然数 N N N,使得: N × b = a N \times b = a N×b=a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋子桓(SongZihuan)

谢谢你的打赏!我将继续努力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值