透过皮亚诺公理看自然数
皮亚诺公理
-
0是自然数
-
每一个确定的自然数 a a a都有后继数,记作 a ′ a' a′,后继数 a ′ a' a′也是自然数。(数 a a a的后继数就是紧挨着 a a a的一个整数,即 a ′ = a + 1 a' = a + 1 a′=a+1)
-
0不是任何自然数的后继数
-
不同的自然数有不同的后继数,如果自然数 b b b和 c c c的后继数都是自然数 a a a,那么 b = c b = c b=c;
-
数学归纳法:设法则 P ( n ) P(n) P(n)是关于自然数 n n n的法则,若 P ( 0 ) P(0) P(0)成立,且假设 P ( N ) P(N) P(N)成立时可推得 P ( N ′ ) P(N') P(N′)成立(或称 P ( N + 1 ) P(N+1) P(N+1)成立),则 P P P对全体自然数都成立。
如,已经直到 P ( N ) P(N) P(N)对 P ( 0 ) P(0) P(0)成立,且当 P ( N ) P(N) P(N)成立时 P ( N ′ ) P(N') P(N′)成立,要证明 P ( 3 ) P(3) P(3)成立,可以根据如下步骤递归:
- P ( 3 ) P(3) P(3)成立即证明 P ( 2 ) P(2) P(2)成立,因为当 P ( N ) P(N) P(N)成立时, P ( N ′ ) P(N') P(N′)成立
- P ( 2 ) P(2) P(2)成立即 P ( 1 ) P(1) P(1)成立
- P ( 1 ) P(1) P(1)成立即 P ( 0 ) P(0) P(0)成立,而我们已经事先证明了 P ( 0 ) P(0) P(0)成立,因此可证 P ( 3 ) P(3) P(3)成立。
下面的论证多使用数学归纳法。
加法的定义
定义
我们定义,加法是满足以下两种规则的运算:
-
∀ m ∈ N \forall m∈N ∀m∈N, 0 + m = m 0 + m = m 0+m=m
-
∀ m , n ∈ N \forall m,n∈N ∀m,n∈N, n ′ + m = ( n + m ) ′ n' + m = (n + m)' n′+m=(n+m)′
比如说: 3 + 2 = ( 3 + 1 ) ′ = ( 3 + 1 ) ′ = ( ( 3 + 0 ) ′ ′ = 3 ′ ′ = 5 3 + 2 = (3 + 1)' = (3 + 1)' = ((3 + 0)'' = 3'' = 5 3+2=(3+1)′=(3+1)′=((3+0)′′=3′′=5。
注:以后在“(自然数)皮亚诺公理”的讨论中, m m m和 n n n特指自然数
推论
a. 1 + 1 = 2 1 + 1 = 2 1+1=2
1 + 1 = 0 ′ + 1 = ( 0 + 1 ) ′ = 1 ′ = 2 1 + 1 = 0' + 1 = (0 + 1)' = 1' = 2 1+1=0′+1=(0+1)′=1′=2
b. 加法结合律
即
∀
a
,
b
,
c
∈
N
∀a,b,c∈N
∀a,b,c∈N满足:
(
a
+
b
)
+
c
=
a
+
(
b
+
c
)
(a+b)+c=a+(b+c)
(a+b)+c=a+(b+c)
证明过程使用数学归纳法
第一步
若
a
=
0
a = 0
a=0,则:
(
a
+
b
)
+
c
=
(
0
+
b
)
+
c
=
b
+
c
=
0
+
(
b
+
c
)
(a + b) + c = (0 + b) + c = b + c = 0 + (b + c)
(a+b)+c=(0+b)+c=b+c=0+(b+c)
0
+
b
=
b
0 + b = b
0+b=b根据加法的定义可以得到,
0
+
(
b
+
c
)
0 + (b + c)
0+(b+c)根据加法的定义得到。
第二步
假设有自然数 k k k(注:以后在“(自然数)皮亚诺公理”的讨论中,凡是使用数学归纳法证明中的 k k k均指自然数),使 a = k a = k a=k,满足 ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c):
则,当
a
=
k
′
a = k'
a=k′时:
(
a
+
b
)
+
c
=
(
k
′
+
b
)
+
c
=
(
k
+
b
)
′
+
c
=
(
(
k
+
b
)
+
c
)
′
=
(
k
+
(
b
+
c
)
)
′
=
k
′
+
(
b
+
c
)
=
a
+
(
b
+
c
)
(a+b)+c = (k' + b) + c = (k + b)' + c = ((k + b) + c)' = (k + (b + c))' = k' + (b + c) = a + (b + c)
(a+b)+c=(k′+b)+c=(k+b)′+c=((k+b)+c)′=(k+(b+c))′=k′+(b+c)=a+(b+c)
当然,从
(
k
+
(
b
+
c
)
)
′
(k + (b + c))'
(k+(b+c))′我们可以得到
k
′
+
(
b
+
c
)
k' + (b + c)
k′+(b+c)也可以得到
k
+
(
b
+
c
)
′
k + (b + c)'
k+(b+c)′,但
k
′
+
(
b
+
c
)
k' + (b + c)
k′+(b+c)更有利于证明过程。
c. m ’ = 1 + m m’ = 1 + m m’=1+m
前面,我们是规定了 m ′ = m + 1 m' = m + 1 m′=m+1,现在来证明 m ′ = 1 + m m' = 1 + m m′=1+m。
第一步
若
m
=
0
m = 0
m=0,则:
1
+
m
=
1
+
0
=
0
′
+
0
=
(
0
+
0
)
′
=
0
′
=
m
′
1 + m = 1 + 0 = 0' + 0 = (0 + 0)' = 0' = m'
1+m=1+0=0′+0=(0+0)′=0′=m′
第二步
假设
m
=
k
m = k
m=k时,
m
′
=
1
+
m
m' = 1 + m
m′=1+m成立,则当
m
=
k
′
m = k'
m=k′时:
1
+
m
=
1
+
k
′
=
(
1
+
k
)
′
=
(
k
′
)
′
=
m
′
1 + m = 1 + k' = (1 + k)' = (k')' = m'
1+m=1+k′=(1+k)′=(k′)′=m′
d. m = m + 0 m = m + 0 m=m+0
第一步
若
m
=
0
m = 0
m=0,则:
m
+
0
=
0
+
0
=
0
+
m
=
m
m + 0 = 0 + 0 = 0 + m = m
m+0=0+0=0+m=m
第二步
假设
m
=
k
m = k
m=k时,
m
′
=
m
+
0
m' = m + 0
m′=m+0成立,则当
m
=
k
′
m = k'
m=k′时:
m
+
0
=
k
′
+
0
=
(
k
+
0
)
′
=
k
′
=
m
m + 0 = k' + 0 = (k + 0)' = k' = m
m+0=k′+0=(k+0)′=k′=m
e.加法交换律
结合上面c和d的证明,可以得到加法交换律。
即
∀
a
,
b
∈
N
∀a,b∈N
∀a,b∈N满足:
a
+
b
=
b
+
a
a + b = b + a
a+b=b+a
第一步
若
a
=
0
a = 0
a=0,则:
a
+
b
=
0
+
b
=
b
=
b
+
0
=
b
+
a
a + b = 0 + b = b = b + 0 = b + a
a+b=0+b=b=b+0=b+a
其中,
b
=
b
+
0
b = b + 0
b=b+0就是使用了上面d的证明
第二步
假设
a
=
k
a = k
a=k时,
a
+
b
=
b
+
a
a + b = b + a
a+b=b+a成立,则当
a
=
k
′
a = k'
a=k′时:
a
+
b
=
k
′
+
b
=
(
k
+
b
)
′
=
(
b
+
k
)
′
=
b
+
k
′
=
b
+
a
a + b = k' + b = (k + b)' = (b + k)' = b + k' = b + a
a+b=k′+b=(k+b)′=(b+k)′=b+k′=b+a
f.加法消去律
即
∀
a
,
b
,
c
∈
N
∀a,b,c∈N
∀a,b,c∈N满足:
a
+
c
=
b
+
c
⇔
a
=
b
a + c = b + c \Leftrightarrow a = b
a+c=b+c⇔a=b
第一步
若
c
=
0
c = 0
c=0,则:
a
+
c
=
b
+
c
⇔
a
+
0
=
b
+
0
⇔
a
=
b
a + c = b + c \Leftrightarrow a + 0 = b + 0 \Leftrightarrow a = b
a+c=b+c⇔a+0=b+0⇔a=b
第二步
若
c
=
k
c = k
c=k时,
a
+
c
=
b
+
c
⇔
a
=
b
a + c = b + c \Leftrightarrow a = b
a+c=b+c⇔a=b,则当
c
=
k
′
c = k'
c=k′时:
a
+
c
=
b
+
c
⇔
a
+
k
′
=
b
+
k
′
⇔
(
a
+
k
)
′
=
(
b
+
k
)
′
⇔
a
+
k
=
b
+
k
⇔
a
=
b
a + c = b + c \Leftrightarrow a + k' = b + k' \Leftrightarrow (a + k)' = (b + k)' \Leftrightarrow a + k = b + k \Leftrightarrow a = b
a+c=b+c⇔a+k′=b+k′⇔(a+k)′=(b+k)′⇔a+k=b+k⇔a=b
其中,
(
a
+
k
)
′
=
(
b
+
k
)
′
⇔
a
+
k
=
b
+
k
(a + k)' = (b + k)' \Leftrightarrow a + k = b + k
(a+k)′=(b+k)′⇔a+k=b+k运用了公理四,
a
+
k
=
b
+
k
⇔
a
=
b
a + k = b + k \Leftrightarrow a = b
a+k=b+k⇔a=b由数学归纳可得。
乘法的定义
定义
我们定义,乘法是满足以下两种规则的运算:
-
∀ m ∈ N \forall m∈N ∀m∈N, m × 0 = 0 m \times 0 = 0 m×0=0
-
∀ m , n ∈ N \forall m,n∈N ∀m,n∈N, m × n ′ = m × n + m m \times n' = m \times n + m m×n′=m×n+m。
比如说: 3 × 2 = 2 ′ × 2 = 2 × 2 + 2 = ( 1 × 2 + 2 ) + 2 = ( ( 0 × 2 + 2 ) + 2 ) + 2 = 0 + 2 + 2 + 2 = 6 3 \times 2 = 2' \times 2 = 2 \times 2 + 2 = (1 \times 2 + 2) + 2 = ((0 \times 2 + 2) + 2) + 2 = 0 + 2 + 2 + 2 = 6 3×2=2′×2=2×2+2=(1×2+2)+2=((0×2+2)+2)+2=0+2+2+2=6,
推论
a. 乘法分配律
即
∀
a
,
b
,
c
∈
N
∀a,b,c∈N
∀a,b,c∈N满足:
a
×
(
b
+
c
)
=
a
×
b
+
a
×
c
a\times (b + c) = a \times b+ a \times c
a×(b+c)=a×b+a×c
第一步
若
b
=
0
b = 0
b=0,则:
a
×
(
b
+
c
)
=
a
×
(
0
+
c
)
=
a
×
c
=
0
+
a
×
c
=
a
×
0
+
a
×
c
=
a
×
b
+
a
×
c
a \times (b + c) = a \times (0 + c) = a \times c = 0 + a \times c = a \times 0 + a \times c = a \times b + a \times c
a×(b+c)=a×(0+c)=a×c=0+a×c=a×0+a×c=a×b+a×c
第二步
假设
b
=
k
b = k
b=k时,
a
×
(
b
+
c
)
=
a
×
b
+
a
×
c
a\times (b + c)=a \times b+ a \times c
a×(b+c)=a×b+a×c成立,则当
b
=
k
′
b = k'
b=k′时:
a
×
(
b
+
c
)
=
a
×
(
k
′
+
c
)
=
a
×
(
k
+
c
)
′
=
a
×
(
k
+
c
)
+
a
=
a
×
k
+
a
×
c
+
a
a \times (b + c) = a \times (k' + c) = a \times (k + c)' = a \times (k + c) + a = a \times k + a \times c + a
a×(b+c)=a×(k′+c)=a×(k+c)′=a×(k+c)+a=a×k+a×c+a
在根据加法结合律和交换律可以得到:
a
×
k
+
a
×
c
+
a
=
a
×
k
+
(
a
×
c
+
a
)
=
a
×
k
+
(
a
+
a
×
c
)
=
(
a
×
b
+
a
)
+
a
×
c
=
a
×
k
′
+
a
×
c
=
a
×
b
+
a
×
c
a \times k + a \times c + a = a \times k + (a \times c + a) = a \times k + (a + a \times c) = (a \times b + a) + a \times c = a \times k' + a \times c = a \times b + a \times c
a×k+a×c+a=a×k+(a×c+a)=a×k+(a+a×c)=(a×b+a)+a×c=a×k′+a×c=a×b+a×c
b. 0 × m = 0 0 \times m = 0 0×m=0
第一步
若
m
=
0
m = 0
m=0,则:
0
×
m
=
0
×
0
=
m
×
0
=
0
0 \times m = 0 \times 0 = m \times 0 = 0
0×m=0×0=m×0=0
第二步
假设
m
=
k
m = k
m=k时,
0
×
m
=
0
0 \times m = 0
0×m=0成立,则当
m
=
k
′
m = k'
m=k′时:
0
×
k
′
=
0
×
k
+
0
=
0
+
0
=
0
0 \times k' = 0 \times k + 0 = 0 + 0 = 0
0×k′=0×k+0=0+0=0
c. n ′ × m = n × m + m n' \times m = n \times m + m n′×m=n×m+m
第一步
若
m
=
0
m = 0
m=0,则:
n
′
×
m
=
0
n' \times m = 0
n′×m=0
因为:
n
×
0
=
0
=
0
+
0
=
n
×
0
+
0
n \times 0 = 0 = 0 + 0 = n \times 0 + 0
n×0=0=0+0=n×0+0
所以:
n
′
×
m
=
0
=
n
×
0
+
0
=
n
×
m
+
m
n' \times m = 0 = n \times 0 + 0 = n \times m + m
n′×m=0=n×0+0=n×m+m
第二步
假设
m
=
k
m = k
m=k时,
n
′
×
m
=
n
×
m
+
m
n' \times m = n \times m + m
n′×m=n×m+m成立,则当
m
=
k
′
m = k'
m=k′时:
n
′
×
m
=
n
′
×
k
′
=
n
′
×
k
+
n
′
=
(
n
×
k
+
k
)
+
n
′
=
(
n
×
k
+
k
)
+
(
n
+
1
)
=
n
×
k
+
k
+
n
+
1
n' \times m = n' \times k' = n' \times k + n' = (n \times k + k) + n' = (n \times k + k) + (n + 1) = n \times k + k + n + 1
n′×m=n′×k′=n′×k+n′=(n×k+k)+n′=(n×k+k)+(n+1)=n×k+k+n+1
根据加法交换律,可以得到:
n
×
k
+
k
+
n
+
1
=
n
×
k
+
n
+
k
+
1
=
(
n
×
k
+
n
)
+
(
k
+
1
)
=
n
×
k
′
+
k
′
=
n
×
m
+
m
n \times k + k + n + 1 = n \times k + n + k + 1 = (n \times k + n) + (k + 1) = n \times k' + k' = n \times m + m
n×k+k+n+1=n×k+n+k+1=(n×k+n)+(k+1)=n×k′+k′=n×m+m
d. 乘法交换律
即
∀
a
,
b
∈
N
∀a,b∈N
∀a,b∈N满足:
a
×
b
=
b
×
a
a \times b = b \times a
a×b=b×a
第一步
若
a
=
0
a = 0
a=0,则:
a
×
b
=
0
×
b
=
0
=
b
×
0
=
b
×
a
a \times b = 0 \times b = 0 = b \times 0 = b \times a
a×b=0×b=0=b×0=b×a
第二步
假设
a
=
k
a = k
a=k时,
a
×
b
=
b
×
a
a \times b = b \times a
a×b=b×a成立,则当
a
=
k
′
a = k'
a=k′时:
a
×
b
=
k
′
×
b
=
k
×
b
+
b
=
b
×
k
+
k
=
b
×
k
′
=
b
×
a
a \times b = k' \times b = k \times b + b = b \times k + k = b \times k' = b \times a
a×b=k′×b=k×b+b=b×k+k=b×k′=b×a
e. 乘法结合律
即
∀
a
,
b
,
c
∈
N
∀a,b,c∈N
∀a,b,c∈N满足:
(
a
×
b
)
×
c
=
a
×
(
b
×
c
)
(a \times b) \times c = a \times (b \times c)
(a×b)×c=a×(b×c)
第一步
若
a
=
0
a = 0
a=0,令
h
=
b
×
c
h = b \times c
h=b×c,则:
(
a
×
b
)
×
c
=
(
0
×
b
)
×
c
=
0
×
c
=
0
a
×
(
b
×
c
)
=
0
×
h
=
0
(a \times b) \times c = (0 \times b)\times c = 0 \times c = 0\\ a \times (b \times c) = 0 \times h = 0
(a×b)×c=(0×b)×c=0×c=0a×(b×c)=0×h=0
所以:
(
a
×
b
)
×
c
=
a
×
(
b
×
c
)
=
0
(a \times b)\times c = a \times (b \times c) = 0
(a×b)×c=a×(b×c)=0
第二步
假设
a
=
k
a = k
a=k时,
(
a
×
b
)
×
c
=
a
×
(
b
×
c
)
(a \times b)\times c = a \times (b \times c)
(a×b)×c=a×(b×c)成立,则当
a
=
k
′
a = k'
a=k′时:
(
a
×
b
)
×
c
=
(
k
′
×
b
)
×
c
=
(
k
×
b
+
b
)
×
c
=
(
k
×
b
)
×
c
+
(
b
×
c
)
=
k
×
(
b
×
c
)
+
(
b
×
c
)
a
×
(
b
×
c
)
=
k
′
×
(
b
×
c
)
=
k
×
(
b
×
c
)
+
(
b
×
c
)
(a \times b) \times c = (k' \times b) \times c = (k \times b + b) \times c = (k \times b)\times c + (b \times c) = k \times (b \times c) + (b \times c)\\ a \times (b \times c) = k' \times (b \times c) = k \times (b \times c) + (b \times c)
(a×b)×c=(k′×b)×c=(k×b+b)×c=(k×b)×c+(b×c)=k×(b×c)+(b×c)a×(b×c)=k′×(b×c)=k×(b×c)+(b×c)
所以:
(
a
×
b
)
×
c
=
a
×
(
b
×
c
)
(a \times b )\times c = a \times (b \times c)
(a×b)×c=a×(b×c)
f. n × m = 0 n \times m = 0 n×m=0, m m m和 n n n中有且至少有一个为 0 0 0
若
m
m
m和
n
n
n都不为零,则必然存在自然数
a
a
a和
b
b
b为
m
m
m和
n
n
n的后继数,即:
m
=
a
′
=
a
+
1
n
=
b
′
=
b
+
1
m = a' = a + 1\\ n = b' = b + 1
m=a′=a+1n=b′=b+1
所以:
n
×
m
=
(
a
′
)
×
b
′
=
a
×
b
′
+
b
′
=
a
×
b
+
a
+
b
′
=
a
×
b
+
a
+
n
n \times m = (a')\times b' = a \times b' + b' = a \times b + a + b' = a \times b + a + n
n×m=(a′)×b′=a×b′+b′=a×b+a+b′=a×b+a+n
很显然,当
m
m
m和
n
n
n不为0的时候
a
×
b
+
a
+
n
a \times b + a + n
a×b+a+n也不为0。因此
m
×
n
=
0
m \times n = 0
m×n=0,
m
m
m和
n
n
n中至少有一个为
0
0
0。
若 m m m或 n n n有一个是0或都是0,则上述推论不成立,因为0不是任何自然数的后继数。然后,根据乘法的性质可推出 m × n = 0 m \times n = 0 m×n=0。
g. 乘法消去律
注:推导乘法消去律涉及自然数的序和正自然数的一些推论和定义
即
∀
a
,
b
∈
N
∀a,b∈N
∀a,b∈N且
c
∈
N
+
c∈N^+
c∈N+满足:
a
×
c
=
b
×
c
⇔
a
=
b
a\times c = b\times c \Leftrightarrow a = b
a×c=b×c⇔a=b
推动过程使用反证法
已知 a × c = b × c a \times c = b \times c a×c=b×c,若:
a
>
b
a \gt b
a>b,则:
a
=
b
+
m
⇔
a
×
c
=
b
×
c
=
(
b
+
m
)
×
c
⇔
b
×
c
=
b
×
c
+
m
×
c
a = b + m \Leftrightarrow a \times c = b \times c = (b + m) \times c \Leftrightarrow b \times c = b \times c + m \times c
a=b+m⇔a×c=b×c=(b+m)×c⇔b×c=b×c+m×c
根据上面可得:
m
×
c
=
0
m \times c = 0
m×c=0,而
m
m
m和
c
c
c都不为0,因此矛盾。
同理可证 a < b a \lt b a<b也是矛盾的,根据自然数的序的三歧性,可得: a = b a = b a=b
正自然数
定义:不是0的自然数叫正自然数
推论
a.自然数和正自然数相加结果为正自然数
即
∀
a
∈
N
∀a∈N
∀a∈N且
b
,
c
∈
N
+
b,c∈N^+
b,c∈N+满足:
a
+
b
=
c
a + b = c
a+b=c
第一步
若
a
=
0
a = 0
a=0,则:
a
+
b
=
0
+
b
=
b
=
c
a + b = 0 + b = b = c
a+b=0+b=b=c
b
b
b和
c
c
c都是正自然数,上述推导成立。
第二步
假设
a
=
k
a = k
a=k时,
a
+
b
=
c
a + b = c
a+b=c成立,当
a
=
k
′
a = k'
a=k′时:
a
+
b
=
k
′
+
b
=
(
k
+
b
)
′
=
c
a + b = k' + b = (k + b)' = c
a+b=k′+b=(k+b)′=c
因为
k
+
b
k + b
k+b是正自然数(即不是0),则
(
k
+
b
)
′
(k + b)'
(k+b)′也是正自然数(0不是任何自然数的后继数)。
自然数的序
m ≥ n m \ge n m≥n(或 n ≤ m n \le m n≤m),当且仅当存在自然数 a a a使得 m = n + a m = n + a m=n+a。称 m > n m \gt n m>n(或 n < m n \lt m n<m),当且仅当 m ≥ n m \ge n m≥n(或 n ≤ m n \le m n≤m),且 m ≠ n m \ne n m=n。
推论
注:下推论默认 ∀ a , b , c ∈ N ∀a,b,c∈N ∀a,b,c∈N
a. a ≥ a ⇔ a = 0 + a a \ge a \Leftrightarrow a = 0 + a a≥a⇔a=0+a
a ≥ a ⇔ a = a + m ⇔ a = a + 0 a \ge a \Leftrightarrow a = a + m \Leftrightarrow a = a + 0 a≥a⇔a=a+m⇔a=a+0
b. a ≥ b , b ≥ c ⇔ a ≥ c a \ge b, b \ge c \Leftrightarrow a \ge c a≥b,b≥c⇔a≥c
由
a
≥
b
,
b
≥
c
a \ge b, b \ge c
a≥b,b≥c,可得:
a
=
b
+
m
0
b
=
c
+
m
1
a = b + m_0\\ b = c + m_1
a=b+m0b=c+m1
其中
m
1
m_1
m1和
m
0
m_0
m0都是自然数
因此:
a
=
c
+
m
1
+
m
0
⇔
a
=
c
+
(
m
0
+
m
1
)
a = c + m_1 + m_0 \Leftrightarrow a = c + (m_0 + m_1)
a=c+m1+m0⇔a=c+(m0+m1)
令自然数
m
=
m
0
+
m
1
m = m_0 + m_1
m=m0+m1,则:
a
=
c
+
m
⇔
a
≥
c
a = c + m \Leftrightarrow a \ge c
a=c+m⇔a≥c
c. a ≥ b , b ≥ a ⇔ a = b a \ge b, b \ge a \Leftrightarrow a = b a≥b,b≥a⇔a=b
由
a
≥
b
,
b
≥
a
a \ge b, b \ge a
a≥b,b≥a,可得:
a
=
b
+
m
0
b
=
a
+
m
1
a = b + m_0\\ b = a + m_1
a=b+m0b=a+m1
其中
m
1
m_1
m1和
m
0
m_0
m0都是自然数
因此:
a
=
(
a
+
m
1
)
+
m
0
=
a
+
(
m
1
+
m
0
)
=
a
+
0
a = (a + m_1) + m_0 = a + (m_1 + m_0) = a + 0
a=(a+m1)+m0=a+(m1+m0)=a+0
根据加法消去律和交换律可得:
m
1
+
m
0
=
0
m_1 + m_0 = 0
m1+m0=0
因为自然数和正自然数相加结果为正自然数,所以
m
1
m_1
m1和
m
0
m_0
m0均不是正自然数,即:
m
1
=
m
0
=
0
m_1 = m_0 = 0
m1=m0=0
根据
a
=
b
+
m
0
a = b + m_0
a=b+m0,可得:
a
=
b
+
0
⇔
a
=
b
a = b + 0 \Leftrightarrow a = b
a=b+0⇔a=b
d. a ≥ b ⇔ a ′ ≥ b ′ a \ge b \Leftrightarrow a' \ge b' a≥b⇔a′≥b′
第一步
若
b
=
0
b = 0
b=0,则:
a
≥
b
⇔
a
≥
0
⇔
a
=
0
+
m
⇔
a
′
=
(
0
+
m
)
′
⇔
a
′
=
0
′
+
m
⇔
a
′
≥
0
′
=
a
≥
b
′
a \ge b \Leftrightarrow a \ge 0 \Leftrightarrow a = 0 + m \Leftrightarrow a' = (0 + m)' \Leftrightarrow a' = 0' + m \Leftrightarrow a' \ge 0' = a \ge b'
a≥b⇔a≥0⇔a=0+m⇔a′=(0+m)′⇔a′=0′+m⇔a′≥0′=a≥b′
其中,
a
=
0
+
m
⇔
a
′
=
(
0
+
m
)
′
a = 0 + m \Leftrightarrow a' = (0 + m)'
a=0+m⇔a′=(0+m)′根据公理三推出。
第二步
若
b
=
k
b = k
b=k时,
a
≥
b
⇔
a
′
≥
b
′
a \ge b \Leftrightarrow a' \ge b'
a≥b⇔a′≥b′成立,则
b
=
k
′
b = k'
b=k′时:
a
≥
b
⇔
a
≥
k
′
⇔
a
=
k
′
+
m
⇔
a
=
(
k
+
m
)
′
⇔
a
′
=
(
k
+
m
)
′
′
⇔
a
′
=
k
′
′
+
m
⇔
a
′
≥
k
′
′
⇔
a
′
≥
b
′
a \ge b \Leftrightarrow a \ge k' \Leftrightarrow a = k' + m \Leftrightarrow a = (k + m)' \Leftrightarrow a' = (k + m)'' \Leftrightarrow a' = k'' + m \Leftrightarrow a' \ge k'' \Leftrightarrow a' \ge b'
a≥b⇔a≥k′⇔a=k′+m⇔a=(k+m)′⇔a′=(k+m)′′⇔a′=k′′+m⇔a′≥k′′⇔a′≥b′
e. a ≥ b ⇔ a + c ≥ b + c a \ge b \Leftrightarrow a + c \ge b + c a≥b⇔a+c≥b+c
第一步
若
c
=
0
c = 0
c=0时,则有:
a
+
c
≥
b
+
c
⇔
a
+
0
≥
b
+
0
⇔
a
≥
b
a + c \ge b + c \Leftrightarrow a + 0 \ge b + 0 \Leftrightarrow a \ge b
a+c≥b+c⇔a+0≥b+0⇔a≥b
第二步
若
c
=
k
c = k
c=k时,
a
≥
b
⇔
a
+
c
≥
b
+
c
a \ge b \Leftrightarrow a + c \ge b + c
a≥b⇔a+c≥b+c成立,则
c
=
k
′
c = k'
c=k′时:
a
+
c
≥
b
+
c
⇔
a
+
k
′
≥
b
+
k
′
⇔
(
a
+
k
)
′
≥
(
b
+
k
)
′
⇔
a
+
k
≥
b
+
k
⇔
a
≥
b
a + c \ge b + c \Leftrightarrow a + k' \ge b + k' \Leftrightarrow (a + k)' \ge (b + k)' \Leftrightarrow a + k \ge b + k \Leftrightarrow a \ge b
a+c≥b+c⇔a+k′≥b+k′⇔(a+k)′≥(b+k)′⇔a+k≥b+k⇔a≥b
f.当 ∀ a , b ∈ N ∀a,b∈N ∀a,b∈N且 c ∈ N + c∈N^+ c∈N+, 有 a > b ⇔ a = b + c a \gt b \Leftrightarrow a = b + c a>b⇔a=b+c
根据
a
>
b
a \gt b
a>b,可得:
a
=
b
+
c
a
≠
b
a = b + c\\ a \ne b
a=b+ca=b
若
c
=
0
c = 0
c=0,则:
a
=
b
+
c
⇔
a
=
b
+
0
⇔
a
=
b
a = b + c \Leftrightarrow a = b + 0 \Leftrightarrow a = b
a=b+c⇔a=b+0⇔a=b
可见,若
c
=
0
c = 0
c=0会出现冲突(
a
=
b
a = b
a=b且
a
≠
b
a \ne b
a=b的冲突),因此
c
≠
0
c \ne 0
c=0。
因为 c c c是自然数,且 c ≠ 0 c \ne 0 c=0,因此 c c c是正自然数,即 c ∈ N + c ∈N^+ c∈N+
g. a ≥ b ⇔ a ′ > b a \ge b \Leftrightarrow a' \gt b a≥b⇔a′>b
根据
a
≥
b
a \ge b
a≥b,则有:
a
≥
b
⇔
a
=
b
+
m
⇔
a
′
=
(
b
+
m
)
′
⇔
a
′
=
b
+
m
′
⇔
a
′
≥
b
a \ge b \Leftrightarrow a = b + m \Leftrightarrow a' = (b + m)' \Leftrightarrow a' = b + m' \Leftrightarrow a' \ge b
a≥b⇔a=b+m⇔a′=(b+m)′⇔a′=b+m′⇔a′≥b
其中,
m
′
≠
0
m' \ne 0
m′=0,因为
0
0
0不是任何数的后继数,则:
a
≠
b
a \ne b
a=b,因此:
a
′
=
b
+
m
′
⇔
a
≥
b
⇔
a
>
b
a' = b + m' \Leftrightarrow a \ge b \Leftrightarrow a \gt b
a′=b+m′⇔a≥b⇔a>b
h.当 ∀ a , b ∈ N ∀a,b∈N ∀a,b∈N且 c ∈ N + c∈N^+ c∈N+, 有 a ≥ b ⇔ a × c ≥ b × c a \ge b \Leftrightarrow a \times c \ge b \times c a≥b⇔a×c≥b×c
根据
a
>
b
a \gt b
a>b,可得:
a
=
b
+
c
⇔
a
×
c
=
b
×
c
+
m
×
c
⇔
a
×
c
≥
b
×
c
a = b + c \Leftrightarrow a \times c = b \times c + m \times c \Leftrightarrow a \times c \ge b \times c
a=b+c⇔a×c=b×c+m×c⇔a×c≥b×c
i.自然数的序的三歧性
即,任意自然数 a a a和 b b b,对下面命题:
- a = b a = b a=b
- a > b a \gt b a>b
- a < b a \lt b a<b
都有且只有一个是成立的。
证明三者只有一个成立
a
=
b
⇔
a
+
0
=
b
⇔
a
=
b
+
0
a
>
b
⇔
a
=
b
+
m
a
<
b
⇔
b
=
a
+
n
a = b \Leftrightarrow a + 0 = b \Leftrightarrow a = b + 0\\ a \gt b \Leftrightarrow a = b + m\\ a \lt b \Leftrightarrow b = a + n
a=b⇔a+0=b⇔a=b+0a>b⇔a=b+ma<b⇔b=a+n
其中,
n
n
n和
m
m
m均为正自然数。
若
a
=
b
a = b
a=b和
a
>
b
a \gt b
a>b同时成立,则:
a
=
b
+
0
a
=
b
+
m
a = b + 0\\ a = b + m
a=b+0a=b+m
即:
b
+
0
=
b
+
m
b + 0 = b + m
b+0=b+m
根据加法消去律可得
m
=
0
m = 0
m=0,因为
m
m
m是正自然数,因此
a
=
b
a = b
a=b且
a
≥
b
a \ge b
a≥b矛盾。
若
a
=
b
a = b
a=b和
a
<
b
a \lt b
a<b同时成立,则:
a
+
0
=
b
b
=
a
+
n
a + 0 = b\\ b = a + n
a+0=bb=a+n
即:
a
+
0
=
a
+
n
a + 0 = a + n
a+0=a+n
根据加法消去律可得
n
=
0
n = 0
n=0,结果矛盾。
若
a
>
b
a \gt b
a>b和
a
<
b
a \lt b
a<b同时成立,则:
a
=
b
+
m
b
=
a
+
n
a = b + m\\ b = a + n
a=b+mb=a+n
即:
a
=
b
+
m
=
a
+
n
+
m
=
a
+
(
n
+
m
)
a = b + m = a + n + m = a + (n + m)
a=b+m=a+n+m=a+(n+m)
因为:
a
=
a
+
0
a = a + 0
a=a+0
所以:
n
+
m
=
0
n + m = 0
n+m=0
因为自然数和正自然数相加结果为正自然数,所以
m
=
n
=
0
m = n = 0
m=n=0,矛盾。
证明三者有一个成立
第一步
若
b
=
0
b = 0
b=0,则
a
a
a和
b
b
b的有序关系是:
a
=
0
+
a
⇔
a
=
b
+
a
⇔
a
≥
b
a = 0 + a \Leftrightarrow a = b + a \Leftrightarrow a \ge b
a=0+a⇔a=b+a⇔a≥b
其中,
a
≥
b
a \ge b
a≥b即:
a
>
b
a \gt b
a>b
或
a
=
b
a = b
a=b
第二步
假设, a a a和 b b b,在 b = k b=k b=k时,存在有序关系 a = b a = b a=b或 a > b a \gt b a>b或 a < b a \lt b a<b,当 b = k ′ b = k' b=k′时则:
若
b
=
k
b = k
b=k时,
a
=
b
a = b
a=b成立,则当
b
=
k
′
b = k'
b=k′时:
a
=
k
⇔
a
+
1
=
k
′
⇔
a
+
1
=
b
⇔
a
<
b
a = k \Leftrightarrow a + 1 = k' \Leftrightarrow a + 1 = b \Leftrightarrow a \lt b
a=k⇔a+1=k′⇔a+1=b⇔a<b
若
b
=
k
b = k
b=k时,
a
>
b
a \gt b
a>b成立,则当
b
=
k
′
b = k'
b=k′时:
a
>
k
⇔
a
=
k
+
m
⇔
a
′
=
(
k
+
m
)
′
⇔
a
′
=
k
′
+
m
⇔
a
′
>
b
⇔
a
≥
b
a \gt k \Leftrightarrow a = k + m \Leftrightarrow a' = (k + m)' \Leftrightarrow a' = k' + m \Leftrightarrow a' \gt b \Leftrightarrow a \ge b
a>k⇔a=k+m⇔a′=(k+m)′⇔a′=k′+m⇔a′>b⇔a≥b
其中,
a
≥
b
a \ge b
a≥b即:
a
>
b
a \gt b
a>b
或
a
=
b
a = b
a=b
若
b
=
k
b = k
b=k时,
a
<
b
a \lt b
a<b成立,则当
b
=
k
′
b = k'
b=k′时:
a
<
k
⇔
a
<
k
′
⇔
a
<
b
a \lt k \Leftrightarrow a \lt k' \Leftrightarrow a \lt b
a<k⇔a<k′⇔a<b
第二数学归纳法
设法则 P ( m ) P(m) P(m)是关于自然数 m m m的法则,其满足一下两个命题:
- 对于有自然数 m 0 m_0 m0满足 m 0 ≤ m m_0 \le m m0≤m,有 P ( m 0 ) P(m_0) P(m0)成立
- 对于自然数 m 1 m_1 m1满足 m 0 ≤ m 1 ≤ m m_0 \le m_1 \le m m0≤m1≤m,假设 P ( m 1 ) P(m_1) P(m1)成立可以,推导 P ( m + 1 ) P(m + 1) P(m+1)成立
则法则 P ( m ) P(m) P(m)对一切大于或等于 m 0 m_0 m0的自然数(即 m ≥ m 0 m \ge m_0 m≥m0)都成立。
证明
根据
m
0
≤
m
m_0 \le m
m0≤m,可以得到:
m
=
m
0
+
k
⇔
m
0
≤
m
1
≤
m
0
+
k
m = m_0 + k \Leftrightarrow m_0 \le m_1 \le m_0 + k
m=m0+k⇔m0≤m1≤m0+k
设法则
S
S
S为:
S
(
k
)
=
P
(
m
1
)
S(k) = P(m_1)
S(k)=P(m1)
首先,我们知道
P
(
m
0
)
P(m_0)
P(m0)成立,也就是
S
(
0
)
S(0)
S(0)成立。当
m
=
m
0
m = m_0
m=m0时,
k
=
0
k=0
k=0。
根据假设 P ( m 1 ) P(m_1) P(m1)成立可以,推导 P ( m + 1 ) P(m + 1) P(m+1)成立,即根据 S ( k ) S(k) S(k)成立推出 S ( k + 1 ) S(k + 1) S(k+1)成立,根据数学归纳法可得到 S ( k ) S(k) S(k)对一切自然数 k k k成立。
因此, P ( m ) P(m) P(m)对一切大于 m 0 m_0 m0的自然数都成立。
注:公理五的数学归纳法又称为第一数学归纳法。广义的数学归纳法指:第一和第二数学归纳法;狭义的数学归纳法指:第一数学归纳法。我们常说的是狭义的数学归纳法。
倒向数学归纳法
设法则 P ( m ) P(m) P(m)是关于自然数 m m m的法则,其满足一下两个命题:
- 对于自然数 m 0 m_0 m0,有 P ( m 0 ) P(m_0) P(m0)成立
- 假设 P ( m ′ ) P(m') P(m′)成立可以推导得到 P ( m ) P(m) P(m)成立
则法则 P ( m ) P(m) P(m)对一切小于或等于 m 0 m_0 m0的自然数(即 m ≤ m 0 m \le m_0 m≤m0)都成立。
其本质其实就是倒过来的数学归纳法,对一切 P ( m ) P(m) P(m)的证明,最终都可以归纳成 P ( n ) P(n) P(n)。
证明:当 ∀ n , a , b ∈ N ∀n,a,b∈N ∀n,a,b∈N且 q ∈ N + q∈N^+ q∈N+,总有 n ≤ b < q n \le b \lt q n≤b<q且 n = a × q + b n = a\times q + b n=a×q+b
第一步
若 n = 0 n = 0 n=0,显然当 a = b = 0 a = b = 0 a=b=0时, n = a × q + b n = a\times q + b n=a×q+b成立。
第二步
若 n = k n = k n=k时, n = a q + b n = aq + b n=aq+b成立,此时的 a a a记作 a 1 a_1 a1,此时的 b b b记作 b 1 b_1 b1,当 n = k ′ = k + 1 n = k' = k + 1 n=k′=k+1时,则:
-
若 b + 1 < q b + 1 \lt q b+1<q,则:
n = k ′ = k + 1 = ( a 1 × q + b 1 ) + 1 = a 1 × q + ( b 1 + 1 ) = a 1 × q + b 1 ′ n = k' = k + 1 = (a_1\times q + b_1) + 1 = a_1\times q + (b_1 + 1) = a_1\times q + {b_1}' n=k′=k+1=(a1×q+b1)+1=a1×q+(b1+1)=a1×q+b1′
即:
a = a 1 b = b 1 ′ a = a_1\\ b = {b_1}' a=a1b=b1′ -
若 b + 1 = q b + 1 = q b+1=q,则:
n = k ′ = k + 1 = ( a 1 × q + b 1 ) + 1 = a 1 × q + ( b 1 + 1 ) = a 1 × q + q = ( a 1 + 1 ) q = a 1 ′ × q n = k' = k + 1 = (a_1\times q + b_1) + 1 = a_1\times q + (b_1 + 1) = a_1\times q + q = (a_1 + 1)q = {a_1}'\times q n=k′=k+1=(a1×q+b1)+1=a1×q+(b1+1)=a1×q+q=(a1+1)q=a1′×q
即:
a = a 1 ′ b = 0 a = {a_1}'\\ b = 0 a=a1′b=0 -
若 b + 1 > q b + 1 \gt q b+1>q,这种情况不存在。
对于上述研究,可以表述为:
对于任意自然数 a a a, b b b,若满足: 0 < b < a 0 \lt b \lt a 0<b<a,总有自然数 N N N,使得: N × b = a N \times b = a N×b=a