在欧式空间里,两条共面的平行线无法相交。然而,在透视空间里确不一定是这样。例如两条铁路虽然是平行的,但是在人眼中,他们最终在地平线相交到了一起,也就是说它们在无限远处相交。这种现象就是透视。
我们平时使用的欧式空间可以很好的描述2D和3D几何,但是无法描述透视几何。实际上,欧式几何是透视几何的一个子集。如果一个点到了无限远,这个点在欧式空间中就会失去意义。因此,数学家August Ferdinand Mobius发明了齐次坐标,从而在透视空间中计算图形和几何。齐次坐标是一种将N位坐标表示为N+1个数字的方式。为了建立2D齐次坐标系,我们只需要加入一个额外的数字w。因此欧式空间的(X,Y)就变成了齐次空间的(x,y,w)。他们之间的关系是
X = x/w
Y = y/w