平行线的相交问题

平行线在透视空间中如何相交?文章介绍了透视几何与欧式几何的区别,并通过引入齐次坐标解释了平行线在无限远处相交的现象。齐次坐标允许表示无限远的点,且具有尺度不变性,使得两条平行线在齐次坐标系中能找到相交点。这一理论在计算机视觉和图像处理中有着重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在欧式空间里,两条共面的平行线无法相交。然而,在透视空间里确不一定是这样。例如两条铁路虽然是平行的,但是在人眼中,他们最终在地平线相交到了一起,也就是说它们在无限远处相交。这种现象就是透视

我们平时使用的欧式空间可以很好的描述2D和3D几何,但是无法描述透视几何。实际上,欧式几何是透视几何的一个子集。如果一个点到了无限远,这个点在欧式空间中就会失去意义。因此,数学家August Ferdinand Mobius发明了齐次坐标,从而在透视空间中计算图形和几何。齐次坐标是一种将N位坐标表示为N+1个数字的方式。为了建立2D齐次坐标系,我们只需要加入一个额外的数字w。因此欧式空间的(X,Y)就变成了齐次空间的(x,y,w)。他们之间的关系是

     X = x/w
     Y = y/w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值