主要内容
1. | 等值式与等值演算。 |
2. | 基本的等值式,其中含:双重否定律、幂等律、交换律、结合律、分配律、德·摩根律、吸收律、零律、同一律、排中律、矛盾律、蕴含等值式、等价等值式、假言易位、等价否定等值式、归谬论。 |
3. | 与主析取范式及主合取范式有关的概念:简单合取式、简单析取式、析取范式、合取范式、极小项、极大项、主析取范式、主合取范式。 |
4. | 联结词完备集(或完全集)。 |
学习要求
1. | 深刻理解等值式的概念。 |
2. | 牢记24个基本等值式,这是等值演算的基础;能熟练地应用它们进行等值演算。 |
3. | 了解简单析取式、简单合取式、析取范式、合取范式的概念。 |
4. | 深刻理解极小项及极大项的定义及它们的名称,及名称下角标与成真赋值的关系。 |
5. | 熟练掌握求公式的主析取范式的方法。 |
6. | 熟练掌由公式的主析取范式求公式的主合取范式的方法。 |
7. | 会用公式的主析取范式(主合取范式)求公式的成真赋值、成假赋值。 |
8. | 会将公式等值地化为任何联结词完备集中的公式。 |
等值式的概念
两公式什么时候代表了同一个命题呢?抽象地看,它们的真假取值完全相同时即代表了相同的命题。
设公式A,B共同含有n个命题变项,可能A或B有哑元,若A与B有相同的真值表,则说明在2n个赋值的每个赋值下,A与B的真值都相同。于是等价式AB应为重言式。
定义2.1 设A,B式两个命题公式,若A,B构成的等价式AB为重言式,则称A与B是等值的,记作A
B.
定义中给出的符号不是联结词符,它是用来说明A与B等值(A
B是重言式)的一种记法,因而是元语言符号。此记号在下文中频繁出现,千万不要将它与
混为一谈,同时也要注意它与一般等号=的区别。
判断等值式有如下方法:
- 1.真值表
- 2.等值演算
- 3.范式
范式
每种数字标准形都能提供很多信息,如代数式的因式分解可判断代数式的根情况。逻辑公式在等值演算下也有标准形--范式,范式有两种:析取范式和合取范式。
简单合取式和简单析取式
定义2.2 命题变项及其否定统称作文字。仅有有限个文字构成的析取式称作简单析取式。仅有有限个文字构成的合取式称作简单合取式。
如1: p,┐q等为一个文字构成简单析趋势,p∨┐p,┐p∨q等为2个文字构成的简单析取式,┐p∨┐q∨r,p∨┐q∨r等为3个文字构成的简单析取式。
如2: ┐p,q等为一个文字构成的简单合取式,┐p∧p,p∧┐q等为2个文字构成的简单合取式,p∧q∧┐r,┐p∧p∧q等为3个文字构成的简单合取式。
应该注意,一个文字既是简单析取式,又是简单合取式。为方便起见,有时用A1,A2,…,As表示s个简单析取式或s个简单合取式。
定理2.1 (1)一个简单析取式是重言式当且仅当它同时含某个命题变项及它的否定式。
(2)一个简单合取式是矛盾式当且仅当它同时含有某个命题变项及它的否定式。
证明: 设Ai是含n个文字的简单析取式,若Ai中既含有某个命题变项pj,又含有它的否定式┐pj,由交换律、排中律和零律可知,Ai为重言式。反之,若Ai为重言式,则它必同时含某个命题变项及它的否定式,否则,若将Ai中的不带否定号的命题变项都取0,带否定号的命题变项都取1,此赋值为Ai的成假赋值,这与Ai是重言式相矛盾。类似的讨论可知,若Ai是含n个命题变项的简单合取式,且Ai为矛盾式,则Ai中必同时含有某个命题变项及它的否定式,反之亦然。
如:p∨┐p,p∨┐p∨r都是重言式。 ┐p∨q,┐p∨┐q∨r都不是重言式。
范式
定义2.3
(1)由有限个简单合取式构成的析取式称为析取范式。
(2)由有限个简单析取式构成的合取式称为合取范式。
(3)析取范式与合取范式统称为范式。
设Ai(i=1,2,…,s)为简单合取式,则A=A1∨A2∨…∨As为析取范式。例如,A1=p∧┐q,A2=┐q∧┐r,A3=p,则由A1,A2,A3构造的析取范式为
A=A1∨A2∨A3=(p∧┐q)∨(┐q∧┐r)∨p
类似地,设Ai(i=1,2,…,s)为简单的析取式,则A=A1∧A2∧…∧As为合取范式。例如,取A1=p∨q∨r,A2=┐p∨┐q,A3=r,则由A1,A2,A3组成的合取范式为
A=A1∧A2∧A3=(p∨q∨r)∧(┐p∨┐q)∧r
形如┐p∧q∧r的公式既是一个简单合取式构成的析取范式,又是由三个简单析取式构成的合取范式。类似地,形如p∨┐q∨r的公式既是含三个简单合取式的析取范式,又是含一个简单析取式的合取范式。
范式有如下性质。
定理2.2 :
(1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式。
(2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式。
下面的定理是本节最重要的定理之一。
定理2.3
(范式存在定理)任一命题公式都存在着与之等值的析取范式与合取范式。
证明:首先,我们观察到在范式中不出现联结词→与。由蕴涵等值式与等价等值式可知
A→B┐A∨B
AB
(┐A∨B)∧(A∨┐B) ..........................(2.17)
因而在等值的条件下,可消去任何公式中的联结词→和。
其次,在范式中不出现如下形式的公式:
┐┐A,┐(A∧B),┐(A∨B)
对其利用双重否定律和德摩根律,可得
┐┐AA
┐(A∧B)┐A∨┐B
┐(A∨B)┐A∧┐B .....................................(2.18)
再次,在析取范式中不出现如下形式的公式&#x