直觉化深度学习教程——什么是前向传播

本文通过一个简化的神经网络例子,详细解释了前向传播的过程,包括加权和的计算以及激活值的计算。阐述了矩阵化表示在神经网络前向传播中的优势,帮助读者理解这一基础概念。
摘要由CSDN通过智能技术生成

所谓前向传播,就是给网络输入一个样本向量,该样本向量的各元素,经过各隐藏层的逐级加权求和+非线性激活,最终由输出层输出一个预测向量的过程。

看完这篇博客,你要是还不懂,一定是我哪里没写清楚,请联系我。

一个简化的例子

因为神经网络两层之间的连线、符号、上下标,确实让人头大,我们可以由一个简化的网络来计算出神经网络两层之间激活值的传递关系。

如图1所示,我们假设一第l层的神经元有2个,第l-1层(也就是上一层)的神经元有3个。每类符号的含义已在图中说明。

在这里插入图片描述

图1.简化的局部网络

由于符号和下标实在太多,因此我们只要计算第一个神经元的 z 1 l z^l_1 z1l a 1 l a^l_1 a1l,第二个神经元的 z 2 l z^l_2 z2l a 2 l a^l_2 a2l简直就是照猫画虎了。图1中有一个会让人初次接触时感觉别扭,就是权重 w w w的下标由其所连接的两个神经元的各自层的索引下标组成,前一层的索引在右边,而后一层的神经元左边,这是为了后面构造矩阵乘法显得简洁。


加权和的计算

根据图1,我们可以按照图2所示,将 z 1 l z^l_1 z1l

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值