Delta机器人的运动学分析

本文详细探讨了Delta机器人的运动学分析,包括机构简述、参数定义、坐标系设定、约束环关系及其反向位置运动学分析。通过对机器人结构的解耦和数学建模,得出约束环方程组,为机器人运动控制提供了理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Delta机器人的运动学分析

@(1@Personal)[DeltaRobot,BLOG]

暂时放出位置分析,稍后更新速度及加加速度分析。


约定

机构简述

机构简述

The delta robot consists of two platforms: the upper one (1) with three motors (3) mounted on it, and smaller one (8) with an end effector (9). The platforms are connected through three arms with parallelograms, the parallelograms restrain the orientation of the lower platform to be parallel to the working surface (table, conveyor belt and so on). The motors (3) set the position of the arms (4) and, thereby, the XYZ-position of the end effector, while the fourth motor (11) is used for rotation of the end effector. You can find more detailed description of delta robot design in the corresponding Wikipedia article.

参数

机构简图1
机构简图2
机构简图3

名称 意义
b 基座中心到电机的距离
a 主动臂长度
f 从动臂长度
p 移动平台中心到链接点的距离
E123 肘关节
{ B} 基座所在平面
B0 移动平台中心位置
B123 电机位置
{ P} 移动平台所在平面
P0 移动平台中心位置
P123 从动臂和移动平台连接点

机构坐标系

机构坐标系

机构坐标系是一个笛卡尔坐标系统,原点与 B0 重合,且 B1 在y轴上,xy平面与 { B} 重合。

轴坐标系

轴坐标系
顺时针旋转为角度正方向。


前期分析

假设 P0 坐标为 (x,y,z) ;三轴转角为 (θ1,θ2,θ3)

约束环

为方便理解,Delta机器人的机械结构可以解耦成3个独立的运动学约束环。下图是以1轴为基准的约束环:

约束环

{ B0P1}={ B0B1}+{ B1E1}+{ E1P1}={ B0P0}+{ P0P1}

这里需要注意,由于Delta结构的特性, { B1E1} 在yz平面上, { P0P1} 平衡于y轴。

为求解方便,将等式 (???) 变换为 { E1P1} 的表达式:

{ E1P1}={ B0P0}+{ P0P1}{ B0B1}{
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值