一、结构模型及其约束分析
传统Delta机器人结构如图1:
图1.Delta机器人结构模型
Delta机器人为并联结构,由三条从动臂组成。上从动臂由电机驱动,可以看作连杆,只能产生绕着电机轴向的旋转运动。
下从动臂由一组对边平行且相等的连杆构成,满足平行四边形特征,因此从动杆与底部平台接点连成的直线,平行于电机轴向。由于同一平面三条相交的直线均平行于各轴轴向,因此底部平台的姿态将平行于顶部安装平台。
二、运动学逆解
2.1 数值法
限定了底部平台的姿态约束,便可以将机械臂的模型等效化:
图2.机械臂模型
现设定坐标系以上平台中心为原点,BB1与X轴正向重合,故:
,
;
,
,
;
,
,
;
,
,
;
从图2可知:
(1)
带入坐标:
(2)
(3)
由于三条从臂等分,故:
(4)
由式(4)可以推出 、
、
2.2结构推导
图3.单臂简化模型
由于上下平台的姿态约束性,可以将机械臂向中心轴平移 ,则末端接点将汇聚于动平台中心点,上平台半径缩减为
。其在XOZ的平面投影如图3所示。
由于机器人的结构,绕Z轴旋转,并不会影响 的值,因此假定末端点
,轴B1在X轴正方向;绕Z轴旋转120度之后,轴B2将来到原B1所在的位置,且
的值并不会产生变化,可以将旋转后的P位置带入旋转前的空间计算,得到的原
将等于现
的值。
故:实际算法只需根据一轴的坐标计算,其他轴将末端位置旋转带入即可。
现 ,L2存在一个y方向上的量,L2对XOZ平面投影得到平面长度L2:
(5)
在XOZ平面,末端点P的平面位置为 ,B1P的长度为F:
(6)
现已知三角形B1PE1 三边的长度,分别为F,L2,L1,则根据余弦定理可得:
(7)
且从图中可以看出
(8)
故:
(9)
三、运动正解
Delta机器人运动学正解以结构为约束条件,利用向量完成末端位置的推导。
根据等效结构,P为末端位置点, ,
,
为三轴的上从动臂末端位置。机器人等效如图4所示:
图4.机器人结构等效图
由于机器人三条从臂长度相等,E为三角形 的外接圆圆心,故
垂直于平面
,F为
中点,故
垂直于
。
令 为原点,
=(
),轴1在X轴正方向上,则:
(10)
(11)
已知 、
、
,可以得出
,
,
的实际位置,如:
(12)
三角形 的外接圆半径为:
(13)
其中:a,b,c为三边边长,S为三角形面积。
由于向量=向量的模*向量的方向向量,故:
(14)
其中 为
的方向向量。
由于 垂直于
,故:
(15)
由于向量叉乘方向遵循右手定则,故:
(16)
同理:
(17)
(18)
(19)
故,带入公式可求出末端 点位置。