3P-Delta机器人运动学与动力学

本文详细探讨了3P-Delta机器人的运动学,包括正逆运动学和雅可比矩阵,以及动力学模型,涉及各部件加速度和动力学模型。通过Adams和Matlab仿真实验验证了末端运动的螺旋线规律,结果一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3P-Delta机器人运动学与动力学

一、运动学

1、正运动学

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

2、逆运动学

在这里插入图片描述

二、雅可比矩阵

在这里插入图片描述
在这里插入图片描述

三、动力学

1、各部件加速度模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、各部件动力学模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、机器人动力学模型

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、仿真验证

机械臂末端运动规律选择式 x = − 25 ∗ t ∗ s i n ( t ) , y = − 25 ∗ t ∗ c o s ( t ) , z = − 22 ∗ t x=-25*t*sin(t),y=-25*t*cos(t),z=-22*t x=25tsin(t),y=25tcos(t),z=22t所示的螺旋线位移变化规律,得到的Adams仿真曲线与Matlab仿真曲线一致。
在这里插入图片描述
在这里插入图片描述

三次样条插值方法可以通过以下步骤实现对机械臂的轨迹规划: 1. 对贝塞尔曲线函数获得的机械臂末端坐标点进行三次样条插值,得到跟时间t相关的位置和速度函数。其中,需要根据末端坐标点的数量i和时间间隔dt计算出插值所需的系数矩阵,并通过求解三对角线方程组的方式计算出每个时间点的位置和速度。 2. 根据机械臂的正解公式,将位置和速度函数转化为电缸位移函数,即求解每个时间点三组机械臂的滑块位移。 3. 根据电缸位移函数和机械臂的逆解公式,得到跟时间t相关的末端位姿函数。 下面是部分MATLAB代码示例: % 输入数据 i = size(Q, 1); % 末端坐标点数量 dt = 0.01; % 时间间隔 % 计算插值所需的系数矩阵 M = zeros(i); M(1, 1:2) = [1, 0]; M(i, i-1:i) = [0, 1]; for j = 2:i-1 M(j, j-1:j+1) = [1, 4, 1]; end M = M / 6; % 计算每个时间点的位置和速度 t = 0:dt:(i-1)*dt; P = bezier(Q, t); % 计算贝塞尔曲线上每个时间点的位置 V = zeros(i, 3); for j = 2:i-1 V(j, :) = (P(j+1, :) - P(j-1, :)) / (2*dt); end % 解三对角线方程组,得到每个时间点的位置和速度 A = diag(ones(i,1)*4) + diag(ones(i-1,1),1) + diag(ones(i-1,1),-1); A(1,2) = 2; A(i,i-1) = 2; B = [V(1,:)*dt^2; 3*(P(3:i,:)-P(1:i-2,:)); V(i,:)*dt^2]; M_inv = inv(M); M_inv_B = M_inv * B; Q_dot = A \ M_inv_B; Q_ddot = zeros(i, 3); for j = 1:i-1 Q_ddot(j, :) = (Q_dot(j+1, :) - Q_dot(j, :)) / dt; end Q_ddot(i, :) = Q_ddot(i-1, :); % 计算每个时间点的电缸位移 L = 1; % 电缸长度 H = 0.5; % 机械臂高度 r = 0.5; % 机械臂半径 theta = zeros(i, 3); for j = 1:i x = P(j, 1); y = P(j, 2); z = P(j, 3); r1 = sqrt(x^2 + y^2); r2 = sqrt((r1-L)^2 + z^2); phi1 = atan2(y, x); phi2 = atan2(z, r1-L); alpha = acos((L^2 + r1^2 + r2^2 - 2*L*r1 - 2*L*r2 + 2*r1*r2) / (2*L*sqrt(r1^2+r2^2-L^2))); theta(j, :) = [phi1, phi2+alpha, acos((r2^2-r^2-H^2)/(2*r*H))]; end theta_dot = zeros(i, 3); for j = 2:i theta_dot(j, :) = (theta(j, :) - theta(j-1, :)) / dt; end theta_dot(1, :) = theta_dot(2, :); % 根据机械臂的逆解公式,计算每个时间点的末端位姿 X = zeros(i, 6); for j = 1:i [X(j,1:3), X(j,4:6)] = delta_ik(theta(j,:), theta_dot(j,:)); end % delta_ik函数,用于计算机械臂的逆解 function [xyz, xyzdot] = delta_ik(theta, thetadot) L = 1; H = 0.5; r = 0.5; phi1 = theta(1); phi2 = theta(2); phi3 = theta(3); dphi1 = thetadot(1); dphi2 = thetadot(2); dphi3 = thetadot(3); x = (L+r*sin(phi3))*cos(phi1)*cos(phi2) + r*cos(phi3)*sin(phi1); y = (L+r*sin(phi3))*sin(phi1)*cos(phi2) - r*cos(phi3)*cos(phi1); z = H + (L+r*sin(phi3))*sin(phi2); xyz = [x, y, z]; xyzdot = [-sin(phi1)*dphi1*(L+r*sin(phi3))*cos(phi2) - cos(phi1)*sin(phi2)*dphi2*(L+r*sin(phi3)) - r*sin(phi1)*sin(phi3)*dphi3; cos(phi1)*dphi1*(L+r*sin(phi3))*cos(phi2) - sin(phi1)*sin(phi2)*dphi2*(L+r*sin(phi3)) + r*cos(phi1)*sin(phi3)*dphi3; cos(phi2)*dphi2*(L+r*sin(phi3)) + r*cos(phi3)*dphi3]; end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值