论文阅读:Multi-scale Optimal Fusion model for single image dehazing

论文题目及作者
代码:https://github.com/phoenixtreesky7/mof_dehazing

1. 摘要

    逐像素(pixel-wise)估计传输率图会导致过饱和,而逐块(patch-wise)估计会导致边缘的传输率错误估计(Transmission MisEstimated,TME),从而引起去雾图像的边缘伪影。如下图1所示。本文提出了一种Multi-scale Optimal Fusion(MOF)模型,该模型原理为在边缘使用逐像素估计,而在非边缘处使用逐块估计。同时,还提出了两种预处理方法提升该模型的鲁棒性和减少计算复杂度。
两种传输率图估计方法的结果对比

图1 两种传输率图估计方法的结果对比

2. 提出的方法

2.1 大气散射模型和暗通道先验

    太基础,不做介绍。
I ( x ) = J ( x ) ⋅ t ( x ) + A ( 1 − t ( x ) ) (1) \boldsymbol{I}(\boldsymbol{x})=\boldsymbol{J}(\boldsymbol{x}) \cdot t(\boldsymbol{x})+\boldsymbol{A}(1-t(\boldsymbol{x})) \tag{1} I(x)=J(x)t(x)+A(1t(x))(1)

d Ω ( x ) = min ⁡ y ∈ Ω ( x ) [ min ⁡ c ∈ { r , g , b } I c ( y ) ] (2) d_{\Omega}(\boldsymbol{x})=\min _{\boldsymbol{y} \in \Omega(\boldsymbol{x})}\left[\min _{c \in\{\boldsymbol{r}, g, b\}} \boldsymbol{I}^{c}(\boldsymbol{y})\right] \tag{2} dΩ(x)=yΩ(x)min[c{r,g,b}minIc(y)](2)

t p a ( x ) = 1 − α min ⁡ y ∈ Ω ( x ) [ min ⁡ c ∈ { r , g , b } I c ( y ) A c ] t p i ( x ) = 1 − α [ min ⁡ c ∈ { r , g , b } I c ( y ) A c ] (3) \begin{aligned} & t_{p a}(\boldsymbol{x})=1-\alpha \min _{\boldsymbol{y} \in \Omega(\boldsymbol{x})}\left[\min _{c \in\{r, g, b\}} \frac{\boldsymbol{I}^{c}(\boldsymbol{y})}{\boldsymbol{A}^{c}}\right] \\ & t_{p i}(\boldsymbol{x})=1-\alpha \left[\min _{c \in\{r, g, b\}} \frac{\boldsymbol{I}^{c}(\boldsymbol{y})}{\boldsymbol{A}^{c}}\right] \end{aligned} \tag{3} tpa(x)=1αyΩ(x)min[c{r,g,b}minAcIc(y)]tpi(x)=1α[c{r,g,b}minAcIc(y)](3)

     t p a t_{p a} tpa为逐块传输率, t p i t_{p i} tpi为逐像素传输率。
J ( x ) = I ( x ) − A t ( x ) + A (4) \boldsymbol{J}(x)=\frac{\boldsymbol{I}(x)-\boldsymbol{A}}{t(x)}+\boldsymbol{A} \tag{4} J(x)=t(x)I(x)A+A(4)

2.2 MOF

    本文的思想为结合两种传输率估计方法。具体而言,就是在边缘使用逐像素估计,而在非边缘使用逐块估计。如下图2所示,图2(a)为蓝色虚线框处边缘区域(即TME区域),图2(b)为该模型的核心思想(详见后文)。
在这里插入图片描述

图2 MOF模型思想

    该模型的公式化如下:
t m o f ( x ) = W t m e ( x ) ⋅ t p i ( x ) + W t m e ‾ ( x ) ⋅ t p a ( x ) (5) t_{mof}(\boldsymbol{x})=\boldsymbol{W}_{t m e}(\boldsymbol{x}) \cdot t_{p i}(\boldsymbol{x})+\boldsymbol{W}_{\overline{t m e}}(\boldsymbol{x}) \cdot t_{p a}(\boldsymbol{x}) \tag{5} tmof(x)=Wtme(x)tpi(x)+Wtme(x)tpa(x)(5)

     t m o f t_{mof} tmof为该模型得到的理想传输率图, t p i t_{pi} tpi t p a t_{pa} tpa为逐像素和逐块传输率图, W t m e \boldsymbol{W}_{t m e} Wtme W t m e ‾ \boldsymbol{W}_{\overline{t m e}} Wtme为结合 t p i t_{pi} tpi t p a t_{pa} tpa两者的权重。因为 0 < t m o f ( x ) < 1 0 < t_{mof}(\boldsymbol{x}) < 1 0<tmof(x)<1,所以 W t m e + W t m e ‾ = 1 \boldsymbol{W}_{t m e}+\boldsymbol{W}_{\overline{t m e}} = 1 Wtme+Wtme=1
    正如前文所说,该模型原理为在边缘使用逐像素估计,而在非边缘处使用逐块估计。转换为数学公式,即在TME区域,最小化 t m o f t_{mof} tmof t p i t_{pi} tpi和的差异,在非TME区域,最小化 t m o f t_{mof} tmof t p a t_{pa} tpa的差异。结合 ( 5 ) (5) (5),有:
W t m e ‾ ( x ) ≈ 0  and  W t m e ( x ) ≈ 1 , x ∈ T M E W t m e ‾ ( x ) ≈ 1  and  W t m e ( x ) ≈ 0 , x ∉ T M E (6) \begin{aligned} &\boldsymbol{W}_{\overline{t m e}}(\boldsymbol{x}) \approx 0 \text { and } \boldsymbol{W}_{t m e}(\boldsymbol{x}) \approx 1, \quad \boldsymbol{x} \in T M E\\ &\boldsymbol{W}_{t \overline{m e}}(\boldsymbol{x}) \approx 1 \text { and } \boldsymbol{W}_{t m e}(\boldsymbol{x}) \approx 0, \quad \boldsymbol{x} \notin T M E \end{aligned} \tag{6} Wtme(x)0 and Wtme(x)1,xTMEWtme(x)1 and Wtme(x)0,x/TME(6)

    如图2(b)所示。
    该模型的目标函数如下:
min ⁡ t m o f ∥ W t m e ⋅ t m o f − t p i ∥ 2 2 + ∥ W t m e ‾ ⋅ t m o f − t p a ∥ 2 2 + λ t ∥ 1 − t m o f ∥ 2 2 + R ( t m o f ) (7) \min _{t_{mof}}\left\|\boldsymbol{W}_{{t m e}} \cdot t_{mof}-t_{{pi}}\right\|_{2}^{2}+\left\|\boldsymbol{W}_{\overline{t m e}} \cdot t_{mof}-t_{{pa}}\right\|_{2}^{2} +\lambda_{t}\left\|1-t_{mof}\right\|_{2}^{2}+\boldsymbol{R}\left(t_{mof}\right) \\ \tag{7} tmofminWtmetmoftpi22+Wtmetmoftpa22+λt1tmof22+R(tmof)(7)
     λ t \lambda_t λt为标准化系数,用于避免无效输出。 R ( t m o f ) \boldsymbol{R}\left(t_{mof}\right) R(tmof)为平滑项。因为 W t m e \boldsymbol{W}_{t m e} Wtme W t m e ‾ \boldsymbol{W}_{\overline{t m e}} Wtme为TME区域的掩模,所以首先需要从图像中识别出TME区域。

1) 获取 W t m e \boldsymbol{W}_{t m e} Wtme& W t m e ‾ \boldsymbol{W}_{\overline{t m e}} Wtme

    从 ( 3 ) (3) (3)分析可知,TME区域可以大致的用如下公式提取:
D t = max ⁡ [ ( 1 − α d p a ) − ( 1 − α d p i ) , 0 ] (8) D_{t}=\max \left[\left(1-\alpha d_{p a}\right)-\left(1-\alpha d_{p i}\right), 0\right] \tag{8} Dt=max[(1αdpa)(1αdpi),0](8)

    其中, d p a d_{pa} dpa d p i d_{pi} dpi I / A \boldsymbol{I} / \boldsymbol{A} I/A的逐块和逐像素的暗通道。

    由上可知:
d p a = min ⁡ y ∈ Ω ( x ) [ min ⁡ c ∈ { r , g , b } I c ( y ) A c ] d_{pa} = \min\limits_{y \in \Omega(x)}[\min\limits_{c \in \{r, g, b\}}\frac{I^c(y)}{A^c}] dpa=yΩ(x)min[c{r,g,b}minAcIc(y)]

d p i = min ⁡ c ∈ { r , g , b } I c ( y ) A c d_{pi} = \min\limits_{c \in \{r, g, b\}}\frac{I^c(y)}{A^c} dpi=c{r,g,b}minAcIc(y)

    在非TME区域, d p a d_{pa} dpa d p i d_{pi} dpi两者相近,而在TME区域, d p a d_{pa} dpa要小于 d p i d_{pi} dpi。根据这一特性,可以提取TME区域。

    如图3所示,图3(a)为 D t D_t Dt,包含了很多纹理信息。但是判别TME区域不需要这些纹理信息,所以通过高斯滤波器进行滤波,结果(用 D g D_g Dg表示)如图3(b)所示。之后再通过 t a n h tanh tanh函数增强对比度,结果(用 D f D_f Df表示)如图3(c)所示。可以到看,纹理信息很平滑,但是边缘信息仍然保留着。
    定义 W t m e = D f \boldsymbol{W}_{t m e} = D_f Wtme=Df W t m e ‾ = 1 − D f \boldsymbol{W}_{\overline{t m e}} = 1 - D_f Wtme=1Df
TME提取过程图

图3 TME提取过程图

2) 单尺度融合模型

    由上定义 W t m e = D f \boldsymbol{W}_{t m e} = D_f Wtme=Df W t m e ‾ = 1 − D f \boldsymbol{W}_{\overline{t m e}} = 1 - D_f Wtme=1Df ( 7 ) (7) (7)重写为:
min ⁡ t m o f ∥ D f ⋅ t m o f − t p i ∥ 2 2 + ∥ ( 1 − D f ) ⋅ t m o f − t p a ∥ 2 2 + λ t ∥ 1 − t m o f ∥ 2 2 + R ( t m o f ) (9) \min _{t_{mof}}\left\|D_f \cdot t_{mof}-t_{{pi}}\right\|_{2}^{2}+\left\|(1 - D_f) \cdot t_{mof}-t_{{pa}}\right\|_{2}^{2} +\lambda_{t}\left\|1-t_{mof}\right\|_{2}^{2}+\boldsymbol{R}\left(t_{mof}\right) \\ \tag{9} tmofminDftmoftpi22+(1Df)tmoftpa22+λt1tmof22+R(tmof)(9)
    从 ( 9 ) (9) (9)中不容易直接求出 t m o f t_{mof} tmof,转化为下面两个步骤求解:

  1. 去除平滑项,直接求解下式:
    t m o f ( x ) = D f ( x ) ⋅ t p i ( x ) + ( 1 − D f ( x ) ) ⋅ t p a ( x ) + λ t D f 2 ( x ) + ( 1 − D f ( x ) ) 2 + λ t (10) t_{m o f}(x)=\frac{D_{f}(x) \cdot t_{p i}(x)+\left(1-D_{f}(x)\right) \cdot t_{p a}(x)+\lambda_{t}}{D_{f}^{2}(x)+\left(1-D_{f}(x)\right)^{2}+\lambda_{t}} \tag{10} tmof(x)=Df2(x)+(1Df(x))2+λtDf(x)tpi(x)+(1Df(x))tpa(x)+λt(10)

    本文中, λ t = 1 0 − 6 \lambda_t = 10^{-6} λt=106

  1. 通过快速GD-GIF平滑 t m o f t_{mof} tmof,下面再讨论。

3) 多尺度融合模型

    上述单尺度融合模型中,逐块估计传输率的块大小,该模型不能很好的处理不同分辨率的图像。因此作者提出了多尺度融合模型,即选择多个块大小的逐块融合传输率图,通过权重进行融合求得最终 t m o f t_{mof} tmof。具体如下。
    首先,需要确定不同的块大小 r j ( j = 1 , 2 , . . . , β ) r^j(j = 1, 2, ..., \beta) rj(j=1,2,...,β)
r j = ⌊ 2 j ⋅ log ⁡ ( w × h ) ⌋ − 1 , j = 1 , 2 , … , β (11) r^{j}=\lfloor 2 j \cdot \log (w \times h)\rfloor-1, \quad j=1,2, \ldots, \beta \tag{11} rj=2jlog(w×h)1,j=1,2,,β(11)

    有了不同尺度的块,通过 ( 10 ) (10) (10)可以求得 t m o f j t_{mof}^j tmofj,对于所有 t m o f j t_{mof}^j tmofj,通过不同权重融合成最终 t m o f t_{mof} tmof
t m o f = ∑ j β v j ⋅ t m o f j , j = 1 , 2 , … , β (12) t_{m o f}=\sum_{j}^{\beta} v^{j} \cdot t_{m o f}^{j}, \quad j=1,2, \ldots, \beta \tag{12} tmof=jβvjtmofj,j=1,2,,β(12)

     v j v_j vj为第 j j j个尺度逐块估计传输率的权重, ∑ j β v j = 1 \sum_{j}^{\beta} v^{j} = 1 jβvj=1,定义如下:
v j = e τ ⋅ ∣ r ( β − j + 1 ) − 1 ∣ ∑ i β e τ ⋅ ∣ r ( i ) − 1 ∣ , j = 1 , 2 , … , β (13) \boldsymbol{v}^{j}=\frac{e^{\tau \cdot|r(\beta-j+1)-1|}}{\sum_{i}^{\beta} e^{\tau \cdot|r(i)-1|}}, \quad j=1,2, \ldots, \beta \tag{13} vj=iβeτr(i)1eτr(βj+1)1,j=1,2,,β(13)

     τ \tau τ为比例控制因子, τ \tau τ越大表示权重的不均匀性越大。本文中, τ = 0.138 \tau = 0.138 τ=0.138
    通常在该模型中, J = 2 J = 2 J=2

2.3 后处理

1) 快速梯度域引导图像滤波(GD-GIF)

    为了抑制 ( 12 ) (12) (12)结果的纹理,增加对 t m o f t_{mof} tmof的快速GD-GIF。

原理详见Gradient Domain Guided Image Filter。

2) 曝光度增强

     t p a t_{pa} tpa通常比 t m o f t_{mof} tmof要大,这就导致通过 t m o f t_{mof} tmof处理后的图像会偏暗。为了解决这一问题,增加如下自适应的曝光度拉伸:
min ⁡ S ∥ 1 − S ⋅ ( I Y / J Y ) ∥ 2 2 + λ e ∥ S − 1 ∥ 2 2 + R ( S ) (14) \min _{S}\left\|1-S \cdot\left(\boldsymbol{I}_{Y} / \boldsymbol{J}_{Y}\right)\right\|_{2}^{2}+\lambda_{e}\|S-1\|_{2}^{2}+R(S) \tag{14} Smin1S(IY/JY)22+λeS122+R(S)(14)

    这里没看懂。

3. 读后感

    本文提出了一种解决逐块估计传输率固有的一个诟病“边缘伪影”的方法。实验结果不错,但是运行时间不是很理想,因为本方法中用到了许多技术,都是比较耗时的。

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值