Introduction
去雾算法过去的常见的模型是大气散射(atmospheric scattering)模型:
I ( p ) = J ( p ) × T ( p ) + A ( p ) × ( 1 − T ( p ) ) I(p)=J(p)\times T(p)+A(p)\times(1-T(p)) I(p)=J(p)×T(p)+A(p)×(1−T(p))
I I I是输入的含雾的图像; J J J是所需要的没有雾的图像; T T T是传输图(trasmission map),传输地图,其表示影响光的到达照相机传感器的距离相关的分量; A A A是全局的大气散射图,代表着环境的光强度。
深度学习方法:可视为layer separation model,分成无雾层和有雾层:
I = Φ ( J , H ) I=\Phi(J,H) I=Φ(J,H)
主要贡献点:
1、把上述两个模型融合用于提高去雾的性能
2、基于注意力机制的多尺度融合模块(attentional multi-level integrated feature, AMLIF)
DM 2 ^2 2F-Net将大气散射模型和layer seperation模型融合成新的去雾模型。
作者认为,浅层的特征可获取更多的背景信息,但无法处理被雾损伤的non-haze 细节。
深层的特征可以用来获得语义信息来去除输入图像的haze信息,但由于感受野太大,会缺少haze-free的信息。
AFIM先获得Attention Weights Ω x = \Omega_x= Ωx=Softmax ( σ ( Θ ∗ M L
ICCV 2019 去雾论文《Deep Multi-Model Fusion for Single-Image Dehazing》
最新推荐文章于 2025-03-19 10:35:25 发布