温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作
主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等
业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。
收藏点赞不迷路 关注作者有好处
文末获取源码
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
开题报告
题目:Python中华古诗词知识图谱可视化
一、研究背景与意义
中华古诗词是中华民族的文化瑰宝,蕴含着丰富的历史、文化和情感信息。随着现代信息技术的不断发展,尤其是人工智能、自然语言处理(NLP)和数据可视化技术的成熟,如何利用现代技术手段对古诗词进行有效的解析和展示,已成为一个重要的研究课题。古诗词不仅是中国文学的核心部分,也是中华文明的文化传承的重要载体。然而,传统的阅读和教学方式已难以满足当代学习者个性化、便捷化的需求。因此,通过构建古诗词知识图谱并利用可视化技术将其直观展现出来,不仅有助于促进中华文化的传承与发展,还能提高古诗词学习的互动性和趣味性。
- 文化传承与创新:通过构建古诗词知识图谱,可以在大数据时代进一步发掘和传承古诗词中的文化价值,为古诗词的普及与传播提供新的方式和平台。
- 知识发现与利用:利用自然语言处理技术和深度学习模型,挖掘古诗词中的潜在信息和关联,发现新的研究视角和切入点。
- 数据可视化应用:推动数据可视化技术在文化领域的创新应用,提升古诗词研究和展示的互动性与趣味性。
- 跨学科研究:本项目不仅涉及文学,还涉及自然语言处理、图数据分析和可视化技术的结合,具有重要的跨学科研究价值。
二、研究目标
本项目旨在通过Python技术构建中华古诗词的知识图谱,并通过数据可视化工具对图谱进行展示,具体目标包括:
- 古诗词知识提取与分析:利用自然语言处理技术,自动化提取古诗词中的相关实体,如诗人、诗词、地名、人物、事件等,并构建知识图谱的基本结构。
- 知识图谱构建:根据提取出的信息,构建一个包含诗人、作品、主题、意象等节点和它们之间关系的知识图谱。
- 可视化展示:利用图形化工具(如NetworkX、Gephi、Plotly等)将知识图谱可视化,帮助用户直观理解古诗词中的各种联系。
- 交互式功能设计:为用户提供交互式界面,允许用户查询诗词、浏览知识图谱、了解诗人及其作品背景等信息。
三、研究内容与方法
-
数据来源与处理
- 数据来源:主要从公开的古诗词数据库(如《唐诗三百首》、古诗文网等)中收集古诗词数据,包括诗歌内容、作者、创作时间、背景等信息。
- 数据清洗与预处理:对收集到的数据进行去重、标准化处理,确保数据的准确性与完整性。
-
知识图谱构建
- 实体识别:利用自然语言处理技术(如结巴分词、spaCy等)对古诗词文本进行实体识别,提取出诗人、地名、历史事件等信息。
- 关系抽取:通过依存句法分析等技术,挖掘诗词中的关系,如“诗人创作了某诗”,“某地与某诗相关”等。
- 知识图谱建模:使用RDF(资源描述框架)等技术构建图谱模型,设计节点和边的类型及属性,保证图谱的可扩展性与可查询性。
-
可视化展示与用户交互
- 图谱可视化:使用Python中的可视化工具(如NetworkX、Matplotlib、Plotly等)将构建好的知识图谱进行可视化,采用力导向布局、圆形布局等方式展示不同节点和关系。
- 交互式可视化:利用Plotly等支持交互的可视化库,为用户提供图谱的放大、缩小、查看节点属性等功能。
- 多维度展示:根据需要设计不同的可视化视图,例如按诗人、朝代、地域等维度展示不同的子图。
-
智能问答系统(可选)
- 构建基于深度学习大模型的古诗词智能问答系统,实现用户提问与古诗词相关信息的智能匹配和回答。
四、实施计划
- 第一阶段(1-2个月):完成数据收集与预处理工作,构建初步的古诗词数据集。
- 第二阶段(2-3个月):构建古诗词的知识图谱,并进行初步的可视化展示。
- 第三阶段(3-4个月):训练深度学习大模型(如LSTM、BERT等),挖掘古诗词的潜在信息,并优化知识图谱的构建。
- 第四阶段(4-6个月):完善可视化系统的设计与实现,进行用户测试与反馈收集。
- 第五阶段(6-7个月):撰写研究论文与报告,完成项目总结。
五、预期成果
- 中华古诗词知识图谱:构建包含诗人、诗词、主题、意象等信息的完整知识图谱,展现古诗词中的复杂关联。
- 交互式可视化平台:开发一个交互式的知识图谱浏览平台,支持用户对古诗词进行查询、分析和学习。
- 研究论文与报告:总结本项目的研究过程和技术实现,撰写相关的研究论文和技术报告。
六、可行性论证
- 技术可行性:Python在数据处理、自然语言处理、图数据分析和可视化等方面具有强大的功能,且相关技术和工具(如jieba、spaCy、NetworkX、Plotly等)已相对成熟,为项目的实施提供了技术保障。
- 数据可行性:公开的古诗词数据库资源丰富,为项目提供了充足的数据支持。
- 人员可行性:研究团队具备扎实的Python编程基础、自然语言处理知识和数据可视化技术,能够胜任本项目的研究工作。
七、参考文献
[此处列出相关文献,例如:]
- 李白.《唐诗三百首》.中华书局, 2007年.
- 王维.《古诗词经典》.人民文学出版社, 2011年.
- 王浩,陈志军.《知识图谱构建与应用》.科学出版社, 2020年.
- 张志宏.《Python数据分析与可视化》.电子工业出版社, 2018年.
(注:以上参考文献仅为示例,实际撰写时应根据具体研究内容添加相关文献。)
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻