1.动态slam
1.1 实时动态 slam GitHub - yubaoliu/RDS-SLAM: DS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods

1.2 实时动态 yolov5+slam 动态场景下的语义SLAM的简单实现(基于YOLOv5目标检测)_yolo +slam-CSDN博客
2.视觉+雷达+imu
2.1 R2live:A Robust, Real-time, LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping package(2021)
GitHub - hku-mars/r2live: R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping package


2.2 R3live:A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package(2021)
GitHub - hku-mars/r3live: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package
2.3 LVI:Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping (2021)
GitHub - TixiaoShan/LVI-SAM: LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping imu 可以校正雷达点云畸变,雷达+ imu 又可以为视觉+ imu 提供初始参数
3.视觉+雷达
3.1 DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-LiDAR Fusion with Deep Association(2022)
GitHub - wangxiyang2022/DeepFusionMOT: Code for RA-L journal and IROS 2022 paper "DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-LiDAR Fusion with Deep Association".
3.2 2DPASS:2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds(2022)
GitHub - yanx27/2DPASS: 2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds (ECCV 2022) :fire:
3.3 mms_slam:Multi-modal semantic SLAM in dynamic environments (Intel Realsense L515 as an example)(2021)
GitHub - wh200720041/mms_slam 使用固态雷达 RGB-D 相机
4.雷达点云语义分割
4.1 SuMa++:Efficient LiDAR-based Semantic SLAM(2019)
GitHub - PRBonn/semantic_suma: SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)
4.2 lidar-bonnetal(2019) GitHub - PRBonn/lidar-bonnetal: Semantic and Instance Segmentation of LiDAR point clouds for autonomous driving
本文探讨了实时动态SLAM技术,如RDS-SLAM和YOLOv5+SLAM,以及视觉、雷达和IMU的紧密耦合状态估计与地图构建。重点介绍了深度融合的多对象跟踪框架、雷达点云的语义分割方法和多模态语义SLAM在动态环境中的应用。



3570

被折叠的 条评论
为什么被折叠?



