World of Warcraft [CLASSIC][80][Shushia] [Obsidian Sanctum][Sartharion]

黑曜石圣殿 [Obsidian Sanctum]   萨塔里奥[Sartharion]
号旗披风、龙魂图典、五色巨龙之怒、黑曜石巨盔等装备,都是非常极品的BIS装备
召唤顺序:(中)塔尼布隆、(右)沙德隆、(左)维斯匹隆

BOSS战开启35秒后落地 【塔尼布隆】 进门【暮光传送门】6个龙蛋生6小龙
塔尼布隆之力【致命】:光环,塔尼布隆的存在使所有敌人受到的暗影伤害提高100%。 使幼龙的暗影吐息和暮光裂隙的伤害大大提高,治疗刷好拉幼龙的T,其他人千万不能踩裂隙。
护甲衰减:瞬发,暮光雏龙使当前目标(近战范围)的护甲值降低1,500点,持续15秒,可叠加10次。

BOSS战开启80秒后落地 【沙德隆】 进门【暮光传送门】杀【沙德隆的信徒】不然免疫伤害就是无敌;
沙德隆之力【致命】:光环,沙德隆的存在使所有敌人受到的火焰伤害提高100%。 使萨塔里奥的烈焰吐息和其他火焰伤害大大提高,治疗刷好MT,保证其满血吃烈焰吐息。同时被烈焰飓风(火墙)撞到后每秒掉4,000血,必须躲开。
暮光之赐:使萨塔里奥造成的火焰伤害提高50%,受到的伤害降低100%。

BOSS战开启120秒后落地【维斯匹隆】 进门【暮光传送门】杀【维斯匹隆的信徒】
维斯匹隆之力【致命】:光环,维斯匹隆的存在使所有敌人的生命上限降低25%。 降低全团血上限, MT的压力最大,尽量让他满血应对烈焰吐息。
暮光折磨:光环,被暮光折磨影响的玩家受到的暗影伤害和火焰伤害提高75%,对敌人造成伤害时自己也会受到1,500-2,000点暗影伤害,每一秒最多受到一次伤害。

(左)维斯匹隆(2 + 1选择的时候,基本都杀他,进门左边)

(中)塔尼布隆

(右)沙德隆,这只无敌是必须进暮光领域杀[沙德隆的信徒]

4)萨塔里奥

零龙也出的,哈哈【龙魂图典】,多几个小弟就多出几件,提升概率呗

【3 + 1】模式难度最大:即进门清小怪不杀3个副官,开BOSS,一般都是直接打BOSS。该模式成就也是310坐骑成就龙里面比较难得一个成就。

World of Warcraft [CLASSIC][80][Grandel] Mount with 310% speed-CSDN博客

### 医学领域中马尔科夫模型的应用 在医学领域,马尔科夫链作为一种有效的数学工具被用来模拟各种随机过程,在疾病进展、治疗反应以及健康状态变化方面提供了有价值的见解[^1]。 #### 马尔科夫链基础概念 马尔科夫链描述了一种特殊的随机过程,该过程中系统的未来状态只取决于当前的状态而与过去的历史无关。这种特性使得它非常适合处理那些具有时间序列特性的医疗数据集。 #### 应用实例:糖尿病患者病情发展预测 为了更好地理解这一理论的实际应用场景,考虑一个简单的例子——利用马尔科夫链来预测糖尿病患者的病情发展趋势: 假设存在三种可能的健康状况:“正常血糖水平”,“前期糖尿病” 和 “确诊糖尿病”。可以定义转移矩阵表示不同状态下转换的概率分布情况如下表所示: | 当前/下一阶段 | 正常血糖水平 | 前期糖尿病 | 确诊糖尿病 | | --- | --- | --- | --- | | **正常血糖水平** | 0.85 | 0.14 | 0.01 | | **前期糖尿病** | 0.20 | 0.79 | 0.01 | | **确诊糖尿病** | 0.00 | 0.00 | 1.00 | 上述表格展示了每一对相邻时间段内个体从一种状态转移到另一种状态的可能性大小。例如,“正常血糖水平”的人在下一个时期保持同样状态的概率为85%,转向前驱型糖尿病的风险约为14%等等。 #### Python 实现案例 下面是一个简单版本的Python程序片段,用于演示如何创建并操作这样一个基本的马尔科夫链模型来进行预测: ```python import numpy as np class MarkovChain(object): def __init__(self, transition_matrix, states): self.transition_matrix = np.atleast_2d(transition_matrix) self.states = states def next_state(self, current_state): return np.random.choice( self.states, p=self.transition_matrix[self.states.index(current_state)], ) def simulate_markov_chain(chain, start_state='Normal', steps=10): state_sequence = [start_state] for _ in range(steps - 1): next_s = chain.next_state(state_sequence[-1]) state_sequence.append(next_s) return state_sequence if __name__ == "__main__": # 定义状态列表和对应的转移概率矩阵 health_states = ['Normal', 'Pre-Diabetes', 'Diabetes'] trans_probabilities = [ [0.85, 0.14, 0.01], [0.20, 0.79, 0.01], [0.00, 0.00, 1.00] ] mc_model = MarkovChain(trans_probabilities, health_states) simulation_result = simulate_markov_chain(mc_model, start_state="Normal", steps=10) print(simulation_result) ``` 这段代码实现了对给定初始条件下连续多个周期内的健康状态演变路径进行了仿真,并打印出了最终的结果序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值