【人工智能LLM】开源 LLM 大模型汇总以及微调策略

目录

前言

自从ChatGPT出世以来,各个大厂/研究院都纷纷推出自己的大模型,大模型领域发展一日千里。随着“百模大战”热度的降低,有必要梳理一下目前主流的大模型以及其变种模型,为大家梳理一下当前开源模型的工作。

LLaMA

GitHub地址:
GitHub - facebookresearch/llama: Inference code for LLaMA
models

LLaMA是由meta2023年推出的大模型,包含了7B、13B、30B、65B,随着“被开源”成为了开源模型的主力,高校/开源社区纷纷推出基于LLaMA二次训练的模型。
在这里插入图片描述

stanford Alpaca

GitHub地址:
[GitHub - tatsu-lab/stanford_alpaca: Code and documentation to train
Stanford’s Alpaca models, and generate the data.](https://github.com/tatsu-
lab/stanford_alpaca “GitHub - tatsu-lab/stanford_alpaca: Code and
documentation to train Stanford’s Alpaca models, and generate the data.”)
stanford大学利用ChatGPT API花费不到500美元低成本获取指令数据集。

Guanaco

GitHub地址:
[GitHub - Guanaco-Model/Guanaco-Model.github.io](https://github.com/Guanaco-
Model/Guanaco-Model.github.io “GitHub - Guanaco-Model/Guanaco-
Model.github.io”)
Guanaco是一个基于Meta的LLaMA
7B模型构建的高级指令遵循语言模型。在 Alpaca 模型最初的 52K 数据集的基础上,又合并了 534,530
个条目,涵盖英语、简体中文、繁体中文(台湾)、繁体中文(香港)、日语、德语以及各种语言和语法任务。这些丰富的数据使Guanaco能够在多语言环境中表现出色。

Vicuna

GitHub地址:
GitHub - lm-sys/FastChat: An open platform for training, serving, and
evaluating large language models. Release repo for Vicuna and
FastChat-T5.

UC伯克利联手CMU、斯坦福、UCSD和MDZUAI推出的大模型,通过ShareGPT收集的用户共享对话在LLaMA进行微调训练而来,训练成本近300美元。
一般来说,vicuna不能直接获取,需要LLaMA原模型权重和delate权重合并获取,由于LLaMA原权重下载不是很方便,所以我上传了合并后的模型权重。
ls291/vicuna-13b-v1.1 · Hugging
Face

Chinese-LLaMA-Alpaca

GitHub地址:
GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU训练部署
(Chinese LLaMA & Alpaca LLMs)

该项目开源了中文LLaMA模型和指令精调的Alpaca大模型。这些模型在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练,进一步提升了中文基础语义理解能力。同时,中文Alpaca模型进一步使用了中文指令数据进行精调,显著提升了模型对指令的理解和执行能力。

Chinese-Vicuna

GitHub地址:
GitHub - Facico/Chinese-Vicuna: Chinese-Vicuna: A Chinese Instruction-
following LLaMA-based Model ——
一个中文低资源的llama+lora方案,结构参考alpaca

鉴于llama,alpaca,guanaco等羊驼模型的研发成功,我们希望基于LLaMA+instruction数据构建一个中文的羊驼模型,并帮助大家能快速学会使用引入自己的数据,并训练出属于自己的小羊驼(Vicuna)

Luotuo-Chinese

GitHub地址:
GitHub - LC1332/Luotuo-Chinese-LLM: 骆驼(Luotuo): Open Sourced Chinese Language
Models. Developed by 陈启源 @ 华中师范大学 & 李鲁鲁 @ 商汤科技 & 冷子昂 @
商汤科技

项目命名为 骆驼 Luotuo (Camel) 主要是因为,Meta之前的项目LLaMA(驼马)和斯坦福之前的项目alpaca(羊驼)都属于偶蹄目-
骆驼科(Artiodactyla-Camelidae)。而且骆驼科只有三个属,再不起这名字就来不及了。
基于各个大模型做的二次衍生开发,开发项目如下:
在这里插入图片描述

Falcon

HF地址:
https://huggingface.co/tiiuae
是阿联酋大学推出的,最大的是40B,在AWS上384个GPU上,使用了1万亿的token训练了两个月。

由于是最近开源的模型,二次衍生的模型较少。

OpenBuddy-Falcon

HF地址:
OpenBuddy (OpenBuddy)
详细信息请见:
可商用!全球首个基于Falcon架构的中文大语言模型OpenBuddy开源了!

ChatGLM && VisualGLM

GitHub地址:
GitHub - THUDM/ChatGLM-6B: ChatGLM-6B: An Open Bilingual Dialogue Language Model | 开源双语对话语言模型
是由智源和清华大学联合开发,释放出ChatGLM-6B,目前是较为主流的中文大模型。
VisualGLM是基于ChatGLM-6B+BLIP2模型联合训练得到多模态大模型。

MOSS

GitHub地址:
GitHub - OpenLMLab/MOSS: An open-source tool-augmented conversational
language model from Fudan University

由复旦大学开发,释放了MOSS-16B模型以及8-bit和4-bit量化模型,同时开源了训练数据

Aquila

GitHub地址:
FlagAI/examples/Aquila at master · FlagAI-Open/FlagAI ·
GitHub

智源新发布的大模型,模型和权重均开源,同时开源协议可商业化。
Aquila语言大模型在技术上继承了GPT-3、LLaMA等的架构设计优点,替换了一批更高效的底层算子实现、重新设计实现了中英双语的tokenizer,升级了BMTrain并行训练方法,在Aquila的训练过程中实现了比Magtron+DeepSpeed
zero-2将近8倍的训练效率。Aquila语言大模型是在中英文高质量语料基础上从0开始训练的,通过数据质量的控制、多种训练的优化方法,实现在更小的数据集、更短的训练时间,获得比其它开源模型更优的性能。

PandaGPT

GitHub地址:
GitHub - yxuansu/PandaGPT: PandaGPT: One Model To Instruction-Follow Them
All

来自University of Cambridge、 Nara Institute of Science and Technology、Tencent AI
Lab的成员开源发布了多模态大模型。该大模型能够接收文本、图像、语音模态,并可进行模态之间转换。

TigerBot

GitHub地址:
GitHub - TigerResearch/TigerBot: TigerBot: A multi-language multi-task
LLM

由虎博科技基于BLOOM模型开发的大语言模型,在BLOOM模型架构和算法上做了如下优化:

  1. 指令完成监督微调的创新算法以获得更好的可学习型(learnability),
  2. 运用 ensemble 和 probabilistic modeling 的方法实现更可控的事实性(factuality)和创造性(generativeness),
  3. 在并行训练上,我们突破了 deep-speed 等主流框架中若干内存和通信问题,
  4. 对中文语言的更不规则的分布,从 tokenizer 到训练算法上做了更适合的算法优化。

模型微调策略

LoRA

GitHub地址:
GitHub - huggingface/peft: 🤗 PEFT: State-of-the-art Parameter-Efficient Fine-
Tuning.

在这里插入图片描述

Lora主要在模型中注入可训练模块,大模型在预训练完收敛之后模型包含许多进行矩阵乘法的稠密层,这些层通常是满秩的,在微调过程中其实改变量是比较小的,在矩阵乘法中表现为低秩的改变,注入可训练层的目的是想下游微调的低秩改变由可训练层来学习,冻结模型其他部分,大大减少模型训练参数。

QLORA

GitHub地址:
GitHub - artidoro/qlora: QLoRA: Efficient Finetuning of Quantized
LLMs

![在这里插入图片描述](https://img-
blog.csdnimg.cn/743c5cc024dc4e27b8906dbc5a1c7554.png#pic_center)
QLORA通过冻结的4位量化预训练语言模型向低秩适配器(LoRA)反向传播梯度。

P-tuningv2

GitHub地址:
ChatGLM-6B/ptuning at main · THUDM/ChatGLM-6B ·
GitHub

![在这里插入图片描述](https://img-
blog.csdnimg.cn/7139245a0e9b490d945a955ab109381a.png#pic_center)
p-tuning v2简单来说其实是soft prompt的一种改进,soft
prompt是只作用在embedding层中,实际测试下来只作用在embedding层的话交互能力会变弱,而且冻结模型所有参数去学习插入token,改变量偏小使得效果有时候不太稳定,会差于微调。p
tuning v2则不只是针对embedding层,而是将连续型token插入每一层,增大改变量和交互性。

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值