单目3D目标检测的鲁棒环境感知与自适应方法
1. 鲁棒检测与顺序特征及深度提示
在单目3D目标检测中,为了实现更准确的检测,提出了一系列方法。首先是对3D目标的表示,通过公式 $G := \left(\begin{bmatrix}x_{3d}\y_{3d}\z_{3d}\end{bmatrix} + \begin{bmatrix}\pm W/2\\pm H/2\\pm L/2\end{bmatrix}\right)R$ 来表示3D目标的位置和姿态,其中 $R$ 是偏航角 $\theta$ 的旋转矩阵。
为了使2D回归头的损失具有深度感知能力,将 $L_{reg2d}$ 重塑为 $d^{\gamma}L_{reg2d}$,其中 $d$ 表示真实深度,在实验中 $\gamma$ 设置为0.4。同时,还提出了深度提示损失 $L_{dh} = M_{dh}L_1(\xi, \hat{\xi})$,这里 $M_{dh}$ 是一个二进制掩码,如果一个bin不包含任何目标中心,则取值为0。
总损失通过所有上述损失的加权和计算得出,公式为 $L_{total} = \lambda[L_{kp}, d^{\gamma}L_{reg2d}, L_{reg3d}, L_{dh}]^T$,其中 $\lambda = [1, \lambda_1, \lambda_2, \lambda_3]$ 是加权向量。
1.1 实验结果
为了验证所提出方法的有效性,进行了一系列实验。
- 实验设置 :使用KITTI基准进行评估,该基准包含7481张图像的训练集和7518张图像的测试集。检测对象分为三个难度级别,训练集按照3DOP