【计算机视觉前沿研究 热点 顶会】CVPR 2024中与3D目标检测、BEV、Lidar、自动驾驶相关的论文

UniMODE:统一的单目 3D 目标检测

实现包括室内和室外场景的统一单目 3D 目标检测在机器人导航等应用中具有重要意义。然而,涉及数据的各种场景来训练模型会带来挑战,因为它们具有显著不同的特性,例如不同的几何特性和异构的域分布。为了解决这些挑战,我们构建了一种基于鸟瞰图(BEV)检测范式的检测器。

LaneCPP:使用物理优先级的连续 3D 车道检测

单目 3D 车道检测已成为自动驾驶领域的一个基本问题,自动驾驶包括寻找路面和定位车道标线的任务。

MonoDiff:使用扩散模型的单目 3D 对象检测和姿势估计

由于缺乏 3D 感知带来的高度不确定性,从单视图像中进行 3D 目标检测和姿态估计是具有挑战性的。作为一种解决方案,最近的单目 3D 检测方法利用诸如立体图像对和 LiDAR 点云等额外的模式来增强图像特征,但代价是额外的注释成本。我们建议使用扩散模型来学习单目 3D 检测的有效表示,而不需要额外的模式或训练数据。我们提出了一个新的框架 MonoDiff,它使用反向扩散过程来估计 3D 边界框和方向。

跨数据集 3D 目标检测的无监督域自适应伪标签精炼

最近的自训练技术在用于 3D 对象检测的无监督域自适应(3D UDA)方面显示出显著的改进。这些技术通常选择伪标签,即 3D 框来监督目标域的模型。然而,这种选择过程不可避免地引入了不可靠的 3D 框,其中 3D 点不能被确定地分配为前景或背景。以前的技术通过将这些框重新加权为伪标签来缓解这一问题,但这些框仍然会干扰训练过程。为了解决这一问题,本文提出了一种新的伪标签精炼框架。

VSRD:用于弱监督3D目标检测的实例感知体积轮廓绘制

单目 3D 对象检测由于其在单目深度估计中固有的不适定性,在 3D 场景理解中构成了重大挑战。现有的方法在很大程度上依赖于使用丰富的 3D 标签的监督学习,这些标签通常是通过在激光雷达点云上进行昂贵且劳动密集的注释来获得的。为了解决这个问题,我们提出了一种新的弱监督 3D 目标检测框架,称为 VSRD(检测的体积轮廓绘制),用于训练没有任何 3D 监督但只有弱 2D 监督的 3D 目标检测器。

### 关于使用Transformer进行多模态目标检测相关研究计算机视觉领域,尤其是针对多模态数据的目标检测方面,近年来基于Transformer架构的方法取得了显著进展。具体到CVPR会议上发表的工作: #### CAT-Det:对比增强的Transformer检测器 Contrastively Augmented Transformer Detector (CAT-Det)[^1] 是一种专为解决多模态3D物体检测挑战而设计的新方法。该模型旨在提高不同传感器输入之间的协同工作能力,从而改善整体性能。 #### Trans-Fusion中的图像引导查询初始化技术 另一项值得注意的技术是在Trans-Fusion框架内提出的Image-Guided Query Initialization机制[^4]。这项创新通过融合来自多个视角的图像特征,并采用这些特征作为自注意力计算过程中的键值对(keys and values),使得激光雷达(LiDAR)鸟瞰图(BEV)特征能够更有效地充当查询(query),进而增强了对于小型目标物检出的能力。 #### 预训练ViT模型的应用 此外,在某些工作中也观察到了利用预训练Vision Transformers(ViT)来初始化探测网络背部结构的做法[^3]。这种方法不仅有助于加速收敛速度,而且还能提升最终模型的表现力。 综上所述,上述提到的各项研究成果均展示了如何巧妙运用Transformers处理复杂的跨传感信息交互问题,推动了多模态感知系统的边界向前迈进了一大步。 ```python # 示例代码展示了一个简单的多模态数据加载函数 def load_multimodal_data(image_paths, lidar_paths): images = [] lidars = [] for img_path, lidar_path in zip(image_paths, lidar_paths): image = cv2.imread(img_path) lidar = np.load(lidar_path) images.append(image) lidars.append(lidar) return images, lidars ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值