数据分析与机器学习学习笔记--卷积神经网络(通俗理解)

本文介绍了卷积神经网络(CNN)的基础知识,包括其在图像识别中的重要性,以及卷积层如何提取图像的局部特征。CNN通过卷积、池化和全连接层进行特征提取和输出,有效地处理图像数据。padding层解决边缘数据利用率问题,pooling层用于压缩数据并防止过拟合。CNN广泛应用于计算机视觉领域,如物体分类和目标检测。
摘要由CSDN通过智能技术生成

1.引言

        卷积神经网络(CNN)广泛应用于图像识别和目标检测,是目前计算机视觉领域的中坚力量。上世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,在早期图像识别类的问题大多采用支持向量机解决,但是由于在2012年的Imagenet比赛中CNN表现出优异的性能,因此在2012年之后被大量应用于图像问题中,本篇就对卷积神经网络进行一个初步的解释。

2.卷积神经网络

        相比于上一篇的神经网络,卷积神经网络与其的区别主要表现在多出了卷积层,正是由于这些卷积层才能够有效提取出一些图像中细微的特征,观察下图对于普通的神经网络中间的隐层使用的都是左侧类型的全连接,所以每次的计算都是统筹的全局,因此才会造成忽略了一些细微的特征;但是观察右图,卷积层进行的是对一张图片的局部区域进行计算并提取特征,相对于全连接层该方式对于局部的特征把握肯定要更加仔细,因此卷积神经网络才能对图像的识别表现更为优秀。

       

        或许你有疑问为什么局部特征把握的越好在图像识别中表现就会越好?我们接着看下面的几幅图片,对于第一幅图片能够轻易的分辨出来这属于猫这一类,在此时人工神经网络和卷积神经网络没有明显的区别,但是对于后两幅图片人工神经网络的识别就不会特别好,因为从全局来看猫的特征被大部分遮蔽,经过人工神经网络计算后图片属于猫的概率不是特别大所以不会分类为猫,但是由于卷积神经网络提取的局部特征,正好猫的尾巴和脸部没有被遮挡经过计算依旧有很大概率属于猫类。经过这个简单的例子相信你已经理解了卷积神经网络为什对图像的分类表现得如此优异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值