一、大模型成为发展通用人工智能的重要途径
在当今快速发展的科技领域,人工智能(AI)已成为推动社会进步的关键力量之一。随着技术的不断进步,人工智能的应用范围也在不断扩大,从简单的自动化任务到复杂的决策支持系统。近年来,大模型(Large Models)在人工智能领域的发展尤为引人注目,它们被广泛认为是实现通用人工智能(AGI)的重要途径。
二、书生浦语大模型开源历程
书生浦语大模型是上海AI实验室与商汤科技联合多家高校共同研发的人工智能模型,其开源历程标志着中国在大模型领域的显著进步。以下是书生浦语大模型的开源历程的简要回顾:
2.1 书生浦语2.0体系
2.2 新一代数据清洗过滤技术
2.3 主要亮点
性能全面提升:
三、全链条开源开放体系
书生浦语全链条开放体系是一个全面、系统的开源开放平台,旨在推动大模型技术的发展和应用。以下是该体系的详细介绍:
1. 数据准备阶段:
- 书生·万卷:这是书生浦语提供的高质量语料数据库,包含中文和英文两个版本。中文语料数据库总数据量达2TB,英文语料数据库总数据量为400GB,均为开源数据,为模型训练提供丰富的数据支持。
2. 预训练阶段:
- InternLM-Train:书生浦语开源了预训练框架InternLM-Train,支持从8卡到千卡训练,显著提升训练效率。该框架通过深度整合Transformer模型算子,实现高效的预训练。
3. 微调阶段:
- XTuner:书生浦语提供了微调工具XTuner,支持全参数微调和低成本微调方法(如LoRA)。XTuner具有广泛的适用性,能够微调多种流行的开源大模型,并自动优化加速,节省算力。
4. 部署阶段:
- LMDeploy:书生浦语提供了部署框架LMDeploy,支持模型轻量化和推理服务。该框架通过4bit权重优化和8bit的k/v优化,使得大模型在GPU上的部署更加高效。
5. 评测阶段:
- OpenCompass:书生浦语提供了全面的模型评测体系OpenCompass,支持千亿参数模型在海量数据集上的分布式评测。该评测体系包括性能评价榜单、评测工具链和评测社区,确保评测结果的复现性。
6. 应用开发阶段:
- LAgent和AgentLego:书生浦语提供了智能体开发框架LAgent和AgentLego,支持多种大语言模型和丰富的工具集合。这些工具使得开发者能够轻松构建多模态智能体,实现复杂应用的开发。
书生浦语全链条开放体系通过这些工具和平台,为大模型的研发和应用提供了完整的解决方案,推动了人工智能技术的创新和应用。