llamaindex+Internlm2 RAG实践

一、Llama-Index
1.1 Llama-Index简介

LlamaIndex 是一个基于 LLM 的应用程序的数据框架,受益于上下文增强。 这种 LLM 系统被称为 RAG 系统,代表 “检索增强生成”。

检索增强生成(RAG)是一种创新的方法,它将搜索系统的检索能力与 LLM 相结合,以达到精准查询的效果。

LlamaIndex 提供了必要的抽象,可以更轻松地摄取、构建和访问私有或特定领域的数据,以便将这些数据安全可靠地注入 LLM 中,以实现更准确的文本生成。

1.2 环境安装
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0

安装 LlamaIndex 词嵌入向量依赖

pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor

二、LlamIndex结合InternLM2的RAG实践

2.1 使用InternLM2回答专业领域问题

未加载知识库之前询问ITSS组成要素包括哪些内容:

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True},
)

rsp = llm.chat(messages=[ChatMessage(content="ITSS组成要素有哪些?")])
print(rsp)

得到的结果不太好:

2.2 使用RAG外接知识库回答专业领域问题

上传ITSS.pdf,并加载到向量数据库,然后再去RAG:


from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("ITSS组成要素有哪些?")

print(response)

模型能够根据检索到的内容生成正确回复:

但是多了两个Query,不知道怎么回事^_^

2.3 获取参考文本片段

我们可以继续获取参考的文本片段:

# 获取引用的文档片段
for node_with_score in response.source_nodes:
    text_node = node_with_score.node
    # 假设文档ID存储在元数据中
    doc_id = text_node.metadata.get('doc_id')  # 或者 text_node.metadata.get('ref_doc_id')
    print(f"Document ID: {doc_id}")
    print(f"Text: {text_node.text}")
    print(f"Score: {node_with_score.score}\n")

得到的最高相似度文本片段:

  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值