C++---状态机模型---股票买卖 V(每日一道算法2023.4.13)

该文介绍了如何使用动态规划解决一个扩展的股票买卖问题,其中涉及在卖出股票后需要经历一天冷冻期才能再次买入。算法通过状态机模型,定义了持有股票、卖出后第一天和卖出后任意天的状态,并进行了状态转移分析,以求得最大利润。
摘要由CSDN通过智能技术生成

注意事项:
本题为"状态机模型—股票买卖 IV"的扩展题,建议先阅读这篇文章并理解。

题目:
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

输入格式
第一行包含整数 N,表示数组长度。
第二行包含 N 个不超过 10000 的正整数,表示完整的数组。

输出格式
输出一个整数,表示最大利润。

数据范围
1≤N≤10^5

样例解释
对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出],第一笔交易可得利润 2-1 = 1,第二笔交易可得利润 2-0 = 2,共得利润 1+2 = 3。

输入:
5
1 2 3 0 2
输出:
3
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100010;
int n;
int w[N], f[N][3];      //w[i]为第i天的 卖出/买入 的价值

int main() {
    cin >> n;
    for (int i = 1; i<=n; i++) cin >> w[i];
    
    //设置状态机的入口
    //从实际意义出发,第0天不可能持有股票同时也不可能是冷冻期,所以设置为负无穷(因为要求的是最大值Max),
    //第0天未持有股票且能自由购入是合法的,此时价值为0,
    f[0][0] = f[0][1] = -0x3f3f3f;
    f[0][2] = 0;
    
    //按状态机分析进行状态转移
    for (int i = 1; i<=n; i++) {
        f[i][0] = max(f[i-1][0], f[i-1][2]-w[i]);
        f[i][1] = f[i-1][0] + w[i];
        f[i][2] = max(f[i-1][1], f[i-1][2]);
    }
    
    //状态机的两个出口取max
    cout << max(f[n][1], f[n][2]);
    return 0;
}

思路:
经典的y式dp分析法

1.状态表示
f[i][0]: 对于前i天且当前持有股票的所有方案,
f[i][1]: 对于前i天且当前是卖出后的第一天(冷冻期)的所有方案,
f[i][2]: 对于前i天且当前是卖出后的第n天(n>=2)(自由买入)的所有方案,
属性为Max。

2.状态计算
直接根据状态机分析来进行转移即可,
f[i][0] = max(f[i-1][0], f[i-1][2]-w[i])
f[i][1] = f[i-1][0] + w[i]
f[i][2] = max(f[i-1][1], f[i-1][2])

状态机表示图:

请添加图片描述

如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!

声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值