注意事项:
本题为"状态机模型—股票买卖 IV"的扩展题,建议先阅读这篇文章并理解。
题目:
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖股票):
- 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
输入格式
第一行包含整数 N,表示数组长度。
第二行包含 N 个不超过 10000 的正整数,表示完整的数组。
输出格式
输出一个整数,表示最大利润。
数据范围
1≤N≤10^5
样例解释
对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出],第一笔交易可得利润 2-1 = 1,第二笔交易可得利润 2-0 = 2,共得利润 1+2 = 3。
输入:
5
1 2 3 0 2
输出:
3
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
int w[N], f[N][3]; //w[i]为第i天的 卖出/买入 的价值
int main() {
cin >> n;
for (int i = 1; i<=n; i++) cin >> w[i];
//设置状态机的入口
//从实际意义出发,第0天不可能持有股票同时也不可能是冷冻期,所以设置为负无穷(因为要求的是最大值Max),
//第0天未持有股票且能自由购入是合法的,此时价值为0,
f[0][0] = f[0][1] = -0x3f3f3f;
f[0][2] = 0;
//按状态机分析进行状态转移
for (int i = 1; i<=n; i++) {
f[i][0] = max(f[i-1][0], f[i-1][2]-w[i]);
f[i][1] = f[i-1][0] + w[i];
f[i][2] = max(f[i-1][1], f[i-1][2]);
}
//状态机的两个出口取max
cout << max(f[n][1], f[n][2]);
return 0;
}
思路:
经典的y式dp分析法
1.状态表示
f[i][0]
: 对于前i天且当前持有股票的所有方案,
f[i][1]
: 对于前i天且当前是卖出后的第一天(冷冻期)的所有方案,
f[i][2]
: 对于前i天且当前是卖出后的第n天(n>=2)(自由买入)的所有方案,
属性为Max。
2.状态计算
直接根据状态机分析来进行转移即可,
f[i][0] = max(f[i-1][0], f[i-1][2]-w[i])
,
f[i][1] = f[i-1][0] + w[i]
,
f[i][2] = max(f[i-1][1], f[i-1][2])
,
状态机表示图:
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流