深入浅出:如何使用Parent Document Retriever优化文档检索

引言

在处理大型文档数据时,通常会面临一个两难选择:是将文档拆分为小块,以便其嵌入准确地反映其意义,还是保持块足够大以保留上下文?ParentDocumentRetriever在检索过程中通过先提取小块数据,然后根据这些块的父ID返回较大的文档,巧妙地解决了这一问题。

本篇文章将深入讲解如何使用ParentDocumentRetriever,并提供详细代码示例。

主要内容

1. Parent Document Retriever概述

ParentDocumentRetriever通过将文档拆分为较小的块进行存储,并在检索时返回较大文档来实现高效的文档检索。这个过程涉及两个主要步骤:

  • 拆分文档:将文档拆分成小块以便存储和索引。
  • 检索父文档:在需要时检索并返回原始较大文档。

2. 支持的组件与功能

在实现这一功能时,使用了以下组件:

  • InMemoryStore:一个简单的内存存储,用来存储父文档。
  • Chroma:一个用于存储和索引文档新区块的向量存储。
  • OpenAIEmbeddings:用于创建文本的嵌入表示。
  • RecursiveCharacterTextSplitter:用于根据字符长度递归拆分文档的文本拆分器。

代码示例

下面的代码示例演示了如何使用ParentDocumentRetriever来检索文档。

from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
from langchain_chroma import Chroma
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 加载文本数据
loaders = [
    TextLoader("paul_graham_essay.txt"),
    TextLoader("state_of_the_union.txt"),
]
docs = []
for loader in loaders:
    docs.extend(loader.load())

# 创建子文档拆分器
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
vectorstore = Chroma(
    collection_name="full_documents", embedding_function=OpenAIEmbeddings()
)
store = InMemoryStore()

# 创建检索器实例
retriever = ParentDocumentRetriever(
    vectorstore=vectorstore,
    docstore=store,
    child_splitter=child_splitter,
)

# 添加文档
retriever.add_documents(docs, ids=None)

# 检索示例
retrieved_docs = retriever.invoke("justice breyer")
print(retrieved_docs[0].page_content)

常见问题和解决方案

挑战1:网络访问限制

在某些地区,直接访问API可能受到限制,建议使用API代理服务提高访问稳定性。

挑战2:文档过大

如果返回的文档过大,可以优化拆分策略,先拆分为较大块,然后再细化为小块。

总结与进一步学习资源

ParentDocumentRetriever提供了一种平衡精确性和上下文保留的文档检索方法。通过拆分和索引较小的文档块,我们可以实现更高效的检索和信息获取。

进一步学习资源

参考资料

  1. LangChain Documentation: https://www.langchain.com/docs/
  2. Chroma Vector Store: https://www.chroma.com/tutorials
  3. OpenAI Embeddings: https://www.openai.com/blog/openai-embeddings/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值