【论文阅读】Twin neural network regression is a semi- supervised regression algorithm

TwinNeuralNetworkRegression(TNNR)是一种预测数据点间目标值差异的算法,适用于半监督回归问题。通过集成预测差异,可以提高对原始回归问题的预测准确性。文章提出了结合有标签和无标签数据的损失函数,包括均方误差损失和循环损失,并展示了这种方法在增强TNNR性能方面的潜力。实验部分探讨了不同参数和循环类型对结果的影响。
摘要由CSDN通过智能技术生成

论文下载
GitHub
bib:

@ARTICLE{WetzelMelko2022Twin,
	title 		= {Twin neural network regression is a semi- supervised regression algorithm},
	author 		= {Sebastian J Wetzel and Roger G Melko and Isaac Tamblyn},
	journal 	= {Machine Learning: Science and Technology},
	year 		= {2022},
	volume 		= {3},
	number 		= {4},
	pages 	    = {045007},
	doi         = {10.1088/2632-2153/ac9885}
}

1. 摘要

Twin neural network regression (TNNR) is trained to predict differences between the target values of two different data points rather than the targets themselves.

TNNR是作者以前的工作,但是针对回归问题的,这篇论文针对的是半监督回归(semi-supervised regression)。

By ensembling predicted differences between the targets of an unseen data point and all training data points, it is possible to obtain a very accurate prediction for the original regression problem.

通过集成未见过的数据点的目标与所有训练数据点之间的预测差异,可以获得对原始回归问题的非常准确的预测。这一步应该是描述对于不同差异的平均操作。

Since any loop of predicted differences should sum to zero, loops can be supplied to the training data, even if the data points themselves within loops are unlabelled.

loop of predicted differences should sum to zero 这一步在上一篇论文中有介绍。

Semi-supervised training improves TNNR performance, which is already state of the art, significantly.

Note:
前置工作《Twin Neural Network Regression》。这篇工作是原作者方法对于半监督学习方向的拓展。

2. 算法描述

在这里插入图片描述

y j p r e = 1 m ∑ i = 1 m ( ( F ( x j , x i t r a i n ) + y i t r a i a n ) = 1 m ∑ i = 1 m ( ( 1 2 F ( x j , x i t r a i n ) + 1 2 F ( x i t r a i n , x j ) + y i t r a i a n ) (1) \begin{aligned} y_j^{pre}&= \frac{1}{m}\sum_{i=1}^{m}((F(x_j, x_i^{train}) + y_i^{traian})\\ &= \frac{1}{m}\sum_{i=1}^{m}((\frac{1}{2}F(x_j, x_i^{train}) + \frac{1}{2}F(x_i^{train}, x_j) + y_i^{traian})\\ \end{aligned}\tag{1} yjpre=m1i=1m((F(xj,xitrain)+yitraian)=m1i=1m((21F(xj,xitrain)+21F(xitrain,xj)+yitraian)(1), where

  • x i t r a i n ∈ X t r a i n x_i^{train} \in X^{train} xitrainXtrain,表示训练集中的训练样本。

n n n labeled data and m m m unlabeled data
有标记数据损失:
ℓ M S E = 1 n 2 ∑ i j ( F ( x i , x j ) − ( y i − y j ) ) 2 \ell_{MSE} = \frac{1}{n^2}\sum_{ij}(F(x_i, x_j)-(y_i-y_j))^2 MSE=n21ij(F(xi,xj)(yiyj))2

注意 n 2 n^2 n2,表示任意两个有标记数据配对。这也是天然适合半监督场景,拓展了训练数据集。

无标记数据损失:
ℓ l o o p = 1 ( n + m ) 2 ∑ i j k ( F ( x i , x j ) + F ( x j , x k ) + F ( x k , x i ) ) \ell_{loop} = \frac{1}{(n+m)^2}\sum_{ijk}(F(x_i, x_j)+F(x_j, x_k)+F(x_k, x_i)) loop=(n+m)21ijk(F(xi,xj)+F(xj,xk)+F(xk,xi))

总损失:
ℓ = ℓ M S E + Λ ℓ l o o p \ell = \ell_{MSE} + \Lambda\ell_{loop} =MSE+Λloop

上面已经把故事讲清楚了,但是还有一些细节。

  • 在mini-batch中,数据是如何配对的。
  • Λ \Lambda Λ 对于实验效果的影响。
  • loop type对于结果的影响。

3. 实验

论文中的对比实验中,对比算法较少。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来日可期1314

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值