【省选模拟】20/06/16

A A A

  • 容斥之后可以简单计算,考场比较憨
    a n s t = ∑ j = 1 n / t ( m j ) ( x t t ! ) j ( ∑ i = 0 t − 1 x i i ! ) m − j [ x n ] n ! m n ans_t=\frac{\sum_{j=1}^{n/t}\binom{m}{j}(\frac{x^t}{t!})^j(\sum_{i=0}^{t-1}\frac{x^i}{i!})^{m-j}[x^n]n!}{m^n} anst=mnj=1n/t(jm)(t!xt)j(i=0t1i!xi)mj[xn]n!
    其中 F t ( x ) = ( ∑ i = 0 t − 1 x i i ! ) t F^t(x)=(\sum_{i=0}^{t-1}\frac{x^i}{i!})^t Ft(x)=(i=0t1i!xi)t 可以喂鸽子, exp ⁡ , ln ⁡ \exp,\ln exp,ln m t t mtt mtt 实现可以做到 n 2 log ⁡ n n^2\log n n2logn C o d e Code Code

B B B

  • 简单推导得到
    A n s = ∑ T = 1 n ( ( μ ⋅ I d 3 ) ∗ I d ) T ∑ i = 1 n / T ∑ j = 1 m / T i j ( i + j ) Ans=\sum_{T=1}^n((\mu \cdot Id^3)*Id)_T\sum_{i=1}^{n/T}\sum_{j=1}^{m/T}ij(i+j) Ans=T=1n((μId3)Id)Ti=1n/Tj=1m/Tij(i+j)
    构造 I d 3 Id^3 Id3 卷上即可, C o d e Code Code

C C C

  • 并没有高级数据结构维护这个东西,考虑第 k k k 大用 b i t s e t bitset bitset 来求,合并和删除都是对一个集合异或
    每个点开一个 b i t s e t bitset bitset 空间炸掉了,考虑 b i t s e t bitset bitset 的总大小是 O ( n ) O(n) O(n) 的,每个点维护一个链表,合并的时候双指针即可,需要支持一个可回退化,复杂度 O ( n 2 ω ) O(\frac{n^2}{\omega}) O(ωn2) C o d e Code Code
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值