「ZJOI2018」树

设大小为 n n n 的不同的树为 T n , 1 , … , T n , m T_{n,1},\dots,T_{n,m} Tn,1,,Tn,m
其中每个 T T T 表示这类树的一个集合
那么求的就是 1 ( n − 1 ) ! k ∑ i ∣ T n , i ∣ k \frac{1}{(n-1)!^k}\sum_{i}|T_{n,i}|^k (n1)!k1iTn,ik

参考:传送门

  • 设 置换 f f f 下的不动点为 f i x ( f ) fix(f) fix(f)
    所有 f f f 使得状态 X X X 在该置换下为不动点的集合为 S G ( X ) SG(X) SG(X)
  • 我们设 F n = ∑ i ∣ T n , i ∣ k F_{n}=\sum_{i}|T_{n,i}|^k Fn=iTn,ik
    考虑将根去掉,形成若干子树,我们按大小从大到小枚举每棵子树
    G n , m G_{n, m} Gn,m 表示除根以外每个子树都 ≤ m \le m m ∑ ∣ T n , i ∣ k \sum|T_{n,i}|^k Tn,ik
    我们枚举最大值个数为 c c c
    那么即 G n , m = ∑ c = 0 ⌊ n − 1 m ⌋ ( n − 1 c × m ) k G n − c × m , m − 1 × H m , c G_{n,m}=\sum_{c=0}^{\lfloor\frac{n-1}{m}\rfloor}\binom{n-1}{c\times m}^kG_{n-c\times m,m-1}\times H_{m,c} Gn,m=c=0mn1(c×mn1)kGnc×m,m1×Hm,c
    其中 H m , c H_{m,c} Hm,c 表示 c c c 个大小为 m m m 的子树的 ∑ ∣ T i ∣ k \sum |\mathcal{T}_i|^k Tik
    (这里姑且用 T i \mathcal{T}_i Ti 表示每种不同的森林)
    考虑计算 H m , c H_{m,c} Hm,c,首先是分配标号的方案数
    我们设大小为 m m m 的子树编号分别为 1 , 2 , … , t 1,2,\dots,t 1,2,,t
    注意编号相同的若干个子树分配标号是算重了的
    我们设选了 p p p 种子树,每个树选了 b i b_i bi 次,那么方案数就是 ( ( c m ) ! m ! c × ∏ 1 b i ! ) k w X \Big(\frac{(cm)!}{m!^c}\times \prod \frac{1}{b_i!}\Big)^kw_{X} (m!c(cm)!×bi!1)kwX
    其中 X X X 表示选的树标号的可重无序集合
    w X w_X wX 表示这个集合中,每棵树的标号都是 [ 1 , m ] [1,m] [1,m],每种不同的森林的大小的 k k k 次方之和
  • 现在考虑计算 w X w_X wX
    一个直观的想法是这样计算: ∏ i = 1 p ( ∑ j = 1 t ∣ T j ∣ a i k ) \prod_{i=1}^p(\sum_{j=1}^t|T_j|^{a_ik}) i=1p(j=1tTjaik)
    这个算的是啥呢 /yun:点了若干个集合(每个集合大小为 a i a_i ai,集合内相同,集合间无限制)
    注意到,对于一个置换 f f f,若满足有 p p p 个环,每个环大小为 b i b_i bi,那么
    ∑ X ∈ f i x ( f ) w X = ∏ i = 1 p ( ∑ j = 1 t ∣ T j ∣ a i k ) \sum_{X\in fix(f)}w_X=\prod_{i=1}^p(\sum_{j=1}^t|T_j|^{a_ik}) Xfix(f)wX=i=1p(j=1tTjaik)
    (注意这里需要把 X X X 修成有序的可重集合,这样才能在每个置换下枚举到)
    这里我们需要在状态中设计一个系数 j j j 表示 k ← k × j k\leftarrow k\times j kk×j
    那么 ∑ X ∈ f i x ( f ) w X = ∏ i = 1 p F m , b i \sum_{X\in fix(f)}w_X=\prod_{i=1}^pF_{m,b_i} Xfix(f)wX=i=1pFm,bi,我们要算的就是 ( ( c m ) ! m ! c × ∏ 1 b i ! ) k ∏ b i ! w X c ! \Big(\frac{(cm)!}{m!^c}\times \prod \frac{1}{b_i!}\Big)^k\frac{\prod b_i!w_X}{c!} (m!c(cm)!×bi!1)kc!bi!wX
    考虑分配系数 A A A ,算出 ∑ X w X ∑ f ∈ S G ( X ) A f \sum_{X}w_X\sum_{f\in SG(X)}A_f XwXfSG(X)Af 使得其等于 ( ( c m ) ! m ! c × ∏ 1 b i ! ) k ∏ b i ! w X c ! \Big(\frac{(cm)!}{m!^c}\times \prod \frac{1}{b_i!}\Big)^k\frac{\prod b_i!w_X}{c!} (m!c(cm)!×bi!1)kc!bi!wX
    ∑ f ∈ S G ( X ) A f = ( ( c m ) ! m ! c × ∏ 1 b i ! ) k ∏ b i ! c ! \sum_{f\in SG(X)}A_f=\Big(\frac{(cm)!}{m!^c}\times \prod \frac{1}{b_i!}\Big)^k\frac{\prod b_i!}{c!} fSG(X)Af=(m!c(cm)!×bi!1)kc!bi!
    根据题解观察和经验
    我们考虑将 A A A 写成 ∏ i B b i \prod_i B_{b_i} iBbi,即每个环长大小系数之积
    注意到 S G ( X ) SG(X) SG(X) 中的 f f f 中的环一定是 X X X 中的分解,设 B ( x ) = ∑ i ≥ 1 x i B i i B(x)=\sum_{i\ge 1}\frac{x^iB_i}{i} B(x)=i1ixiBi
    那么 ∏ i = 1 p [ x b i ] exp ⁡ ( B ) = ( ( c m ) ! m ! c × ∏ 1 b i ! ) k 1 c ! \prod_{i=1}^p [x^{b_i}]\exp(B)=\Big(\frac{(cm)!}{m!^c}\times \prod \frac{1}{b_i!}\Big)^k\frac{1}{c!} i=1p[xbi]exp(B)=(m!c(cm)!×bi!1)kc!1,其中 ( ( c m ) ! m ! c ) k 1 c ! (\frac{(cm)!}{m!^c})^k\frac{1}{c!} (m!c(cm)!)kc!1 为常数
    于是我们构造 [ x i ] exp ⁡ B = 1 i ! k [x^i]\exp B=\frac{1}{i!^k} [xi]expB=i!k1 就可以了
    那么现在只需要算出 ∑ f A f ∏ i = 1 p F m , b i \sum_fA_f\prod_{i=1}^pF_{m,b_i} fAfi=1pFm,bi,直接枚举环: exp ⁡ ( ∑ i ≥ 1 B i F m , i x i i ) \exp(\sum_{i\ge 1}\frac{B_iF_{m,i}x^i}{i}) exp(i1iBiFm,ixi)
  • 最后的式子就长这样:
    G n , m , j = ∑ c G n − m c , m − 1 , j × [ x c ] exp ⁡ ( ∑ i ≥ 1 B i G m , m − 1 , j x i i ) G_{n,m,j}=\sum_c G_{n-mc,m-1,j}\times [x^c]\exp(\sum_{i\ge 1}\frac{B_iG_{m,m-1,j}x^i}{i}) Gn,m,j=cGnmc,m1,j×[xc]exp(i1iBiGm,m1,jxi)
    其中 n × j ≤ N n\times j\le N n×jN,对于每个 n n n,需要 n log ⁡ n n\log n nlogn 的时间来转移
    所以这里的复杂度为 O ( ∑ n = 1 N N n n log ⁡ n = N 2 log ⁡ N ) \mathcal{O}(\sum_{n=1}^N\frac{N}{n}n\log n=N^2\log N) O(n=1NnNnlogn=N2logN)(注意避免转移时的快速幂)
    然后考虑计算 B B B 的时间: O ( ∑ n = 1 N ∑ m = 1 N ( N n m ) 2 = N 2 ) \mathcal{O}(\sum_{n=1}^N\sum_{m=1}^N(\frac{N}{nm})^2=N^2) O(n=1Nm=1N(nmN)2=N2)
  • 个人觉得中间算两次的部分特别巧妙
    ∑ X ∈ f i x ( f ) w X = ∏ i = 1 p F m , b i \sum_{X\in fix(f)}w_X=\prod_{i=1}^pF_{m,b_i} Xfix(f)wX=i=1pFm,bi,然后转成枚举置换
#include<bits/stdc++.h>
#define cs const
#define pb push_back

using namespace std;
typedef vector<int> vi;
 
int Mod;
int add(int a, int b){ return a + b >= Mod ? a + b - Mod : a + b; }
int dec(int a, int b){ return a - b < 0 ? a - b + Mod : a - b; }
int mul(int a, int b){ return 1ll * a * b % Mod; }
void Add(int &a, int b){ a = add(a, b); }
void Dec(int &a, int b){ a = dec(a, b); }
void Mul(int &a, int b){ a = mul(a, b); }
int ksm(int a, int b){
	int ans = 1; for(; b; b >>= 1, Mul(a, a))
	if(b & 1) Mul(ans, a); return ans;
}

cs int N = 2e3 + 50; 
int n, k, dp[N][N];
int B[N], fc[N], ifc[N], iv[N];
int p[N][N], ip[N][N];
void ln(int *a, int n){
	static int b[N]; b[0] = 0; 
	for(int i = 1; i <= n; i++){
		b[i] = mul(i, a[i]);
		for(int j = 1; j < i; j++)
		Dec(b[i], mul(b[j], a[i - j]));
	} for(int i = 0; i <= n; i++)
		a[i] = mul(b[i], iv[i]);
}
void Exp(int *a, int n){
	static int b[N];
	for(int i = 0; i <= n; i++)
		b[i] = 0, Mul(a[i], i);
	b[0] = 1; 
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= i; j++)
		Add(b[i], mul(a[j], b[i - j]));
		Mul(b[i], iv[i]);
	}
	for(int i = 0; i <= n; i++) a[i] = b[i];
}
void work(int m, int j, int n){
	for(int i = 0; i <= n; i++)
		B[i] = ksm(ifc[i], 1ll * k * j % (Mod - 1));
	ln(B, n); for(int i = 1; i <= n; i++)
		Mul(B[i], dp[j * i][m]); Exp(B, n);
}
int main(){
	#ifdef FSYo
	freopen("1.in", "r", stdin);
	#endif
	cin >> n >> k >> Mod;
	fc[0] = ifc[0] = 1; 
	for(int i = 1; i <= n; i++)	
		fc[i] = mul(fc[i - 1], i);
	ifc[n] = ksm(fc[n], Mod - 2);
	for(int i = n - 1; i; i--)
		ifc[i] = mul(ifc[i + 1], i + 1);
	iv[1] = 1; 
	for(int i = 2; i <= n; i++)
		iv[i] = mul(Mod - Mod / i, iv[Mod % i]);
	for(int i = 1; i <= n; i++)
		dp[i][1] = 1; 
	for(int i = 1; i <= n; i++) {
		int mt = ksm(i, k), imt = ksm(iv[i], k);
		p[i][1] = mt, ip[i][1] = imt;
		for(int j = 2; j <= n / i; j++)
		p[i][j] = mul(p[i][j - 1], mt),
		ip[i][j] = mul(ip[i][j - 1], imt);
	}
	for(int i = 1; i < n; i++) 
	for(int j = 1; j <= n / i; j++){ 
		work(i, j, n / (i * j));
		
		static int pw[N], ipw[N];
		for(int l = 1; l <= n / j; l++)
		pw[l] = p[l][j], ipw[l] = ip[l][j];
		
		for(int l = n / j; l > i; l--)
		for(int c = 1; c * i <= l; c++){
			int w = mul(B[c], dp[j][l - c * i]);
			Mul(w, mul(ipw[l], pw[l - c * i]));
			Add(dp[j][l], w);
		}
	} cout << mul(ksm(n, k), dp[1][n]);
	return 0; 
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值