数字游戏[线性筛]

alice 和 bob 又在玩一个游戏。他们从一个数字 X0>=3,开始,期望到很大的数字。游戏是这样的:

alice 先走,然后轮流。在第 i 个回合中,轮到的玩家找一个小于当前数字的素数, 然后选择大于当前数字且是找的素数的倍数。即选择的素数 P<Xi-1,Xi>=Xi-1,Xi 是 P 的倍数,注意如果 P 是 Xi-1 的约数,那么数字不会变。

L 知道了他们两轮后的状态,现在给你一个 X2 表示两轮后选择的数字,请你确定最小的起始数字 X0。特别提醒,玩家不一定每一步选择是最聪明的,你应该考虑所有可能的情况。

【输入】

输入一个整数 X2,保证 X2 是合数

【输出】

输出一个整数 X0

【输入样例 1】14

【输出样例 1】6

【样例解释】

X0=6,

第一轮:alice 选择素数 5,并决定这轮数字X1=10

第一轮:BOB 选择素数 7,并决定这轮数字 X2=14

分析

推一下,我们发现,需要求每个数的最大z质约数

void pre(int n){
	for(int i=2;i<=n;i++){
		if(isp[i]==0){
			prim[++cnt]=i;//质数 
			p[i]=i;	//最大质因子
		}
		for(int j=1;j<=cnt&&prim[j]*i<=n;j++){//筛 i*比i小的质数 ->i是最大因子
			isp[prim[j] * i]=1;
			p[prim[j] * i]=p[i];//最大质因子,每个数是由最大因子筛选出 
			/*一个数的最大质因子是它的最大因子的最大质因子
			这个break保证了合数只被最小质约数访问到。 
                        比如40=2*20=4*10=5*8,只有i=20时,才会在prim[j]=2的时候被访问到。 
                        当i=10时,在prim[j]=2时就已经被break了;同样的,i=8时,在prim[j]也已经break
			*/ 
			if(i%prim[j]==0)break;
		}
	}
}

线性筛一定要会,处理质数的利器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值