题目描述
小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低。但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“靶形数独”,作为这两个孩子比试的题目。
靶形数独的方格同普通数独一样,在 9 格宽×9 格高的大九宫格中有9 个 3格宽×3 格高的小九宫格(用粗黑色线隔开的)。在这个大九宫格中,有一些数字是已知的,根据这些数字,利用逻辑推理,在其他的空格上填入 1到 9的数字。每个数字在每个小九宫格内不能重复出现,每个数字在每行、每列也不能重复出现。但靶形数独有一点和普通数独不同,即每一个方格都有一个分值,而且如同一个靶子一样,离中心越近则分值越高。(如图)
上图具体的分值分布是:最里面一格(黄色区域)为 10 分,黄色区域外面的一圈(红色区域)每个格子为9分,再外面一圈(蓝色区域)每个格子为8 分,蓝色区域外面一圈(棕色区域)每个格子为7分,最外面一圈(白色区域)每个格子为6分,如上图所示。比赛的要求是:每个人必须完成一个给定的数独(每个给定数独可能有不同的填法),而且要争取更高的总分数。而这个总分数即每个方格上的分值和完成这个数独时填在相应格上的数字的乘积的总和
总分数即每个方格上的分值和完成这个数独时填在相应格上的数字的乘积的总和。如图,在以下的这个已经填完数字的靶形数独游戏中,总分数为 2829。游戏规定,将以总分数的高低决出胜负。
由于求胜心切,小城找到了善于编程的你,让你帮他求出,对于给定的靶形数独,能够得到的最高分数。
输入输出格式
输入格式:
一共 9 行。每行9个整数(每个数都在 0−9 的范围内),表示一个尚未填满的数独方格,未填的空格用“0”表示。每两个数字之间用一个空格隔开。
输出格式:
输出共 1 行。输出可以得到的靶形数独的最高分数。如果这个数独无解,则输出整数-1。
输入样例#1:
7 0 0 9 0 0 0 0 1 1 0 0 0 0 5 9 0 0 0 0 0 2 0 0 0 8 0 0 0 5 0 2 0 0 0 3 0 0 0 0 0 0 6 4 8 4 1 3 0 0 0 0 0 0 0 0 7 0 0 2 0 9 0 2 0 1 0 6 0 8 0 4 0 8 0 5 0 4 0 1 2
输出样例#1:
2829
输入样例#2:
0 0 0 7 0 2 4 5 3 9 0 0 0 0 8 0 0 0 7 4 0 0 0 5 0 1 0 1 9 5 0 8 0 0 0 0 0 7 0 0 0 0 0 2 5 0 3 0 5 7 9 1 0 8 0 0 0 6 0 1 0 0 0 0 6 0 9 0 0 0 0 1 0 0 0 0 0 0 0 0 6
输出样例#2:
2852
1.基本的回溯是搜索的基础
回溯模板
void dfs(答案,搜索层数,其他参数){
if(层数==maxdeep){
更新答案;
return;
}
(剪枝)
for(枚举下一层可能的状态){
更新全局变量表示状态的变量;
dfs(答案+新状态增加的价值,层数+1,其他参数);
还原全局变量表示状态的变量;
}
}
2.本题的优化
优化1:从能填个数少的开始搜
优化2:直接跳到下一个要填的
优化3:直接知道这一位可以填什么
2,3都可以用巧妙的位运算来完成
对于2
类似于状压DP,我们把一行有数字的表示为1,否则为0
于是h[i]表示第i行的状态
如0 0 0 7 0 2 4 5 3
的状态是 0 0 0 1 0 1 1 1 1 = 79
我们发现用511-h[i]就是 1 1 1 0 1 0 0 0 0
第一个要填的是右往左数第5个,不就可以用lowbit来实现吗
对于3
H[i]表示i行已经放了的数的状态
L[i]表示i列....
G[i][j]表示九宫格...
例如
100010100 表示放了3,5,9
010000100
110101110
我们发现只有当3个的同一位都是0时,才能填那个数
于是所有可以填的数的状态就是511-(H[i]|L[i]|G[i][j])
对于1
统计一排为0的个数,从小到大排序
代码
#include<bits/stdc++.h>
using namespace std;
int h[10],R[10],H[10],L[10],G[4][4];
int a[10][10],Log[1000],st[10],Max;
int N(int i,int j){
if(i==1||i==9||j==1||j==9) return 6;
if(i==2||i==8||j==2||j==8) return 7;
if(i==3||i==7||j==3||j==7) return 8;
if(i==4||i==6||j==4||j==6) return 9;
return 10;
}
void update(){
int ans=0;
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
ans+=a[i][j]*N(i,j);
Max=max(Max,ans);
}
void dfs(int u){
if(u>9){update();return;}
int i=st[u],j;
int x=(1<<9)-1-h[i],y=x&-x;
h[i]|=y,j=Log[y]+1;
int state=(1<<9)-1-(H[i]|L[j]|G[(i-1)/3][(j-1)/3]);//可以放哪些
while(state>0){
int x0=state&-state;
state-=x0;//不能放了
a[i][j]=Log[x0]+1;
H[i]|=x0,L[j]|=x0,G[(i-1)/3][(j-1)/3]|=x0;
if(x==y) dfs(u+1);//lowbit(x)==x 即只有最后一个可以放了
else dfs(u);
H[i]-=x0,L[j]-=x0,G[(i-1)/3][(j-1)/3]-=x0;//回溯
}
h[i]-=y;
}
int main(){
//freopen("1.in","r",stdin);
for(int i=2;i<=1000;i++) Log[i]=Log[i/2]+1;//预处理Log
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++){
cin>>a[i][j];st[i]=i;
if(a[i][j]){
h[i]|=1<<(j-1);
int x0=1<<(a[i][j]-1);
H[i]|=x0,L[j]|=x0,G[(i-1)/3][(j-1)/3]|=x0;
}
else R[i]++;//为0的个数
}
for(int i=1;i<=8;i++){//排序
for(int j=i+1;j<=9;j++)
if(R[st[i]]>R[st[j]])swap(st[i],st[j]);
}
dfs(1);//从最少的(st[1])开始搜
cout<<(Max==0?-1:Max);return 0;
}