[整体二分的概述]
大家应该知道怎么一组找静态区间第k大
二分答案出mid,如果比mid小的数的个数>k , mid变小,否则mid变大
当有很多组时,复杂度很不优秀,因此出现了整体二分
即将所有操作一起二分答案
刚刚理解整体二分时,立马想到了一幅图,与大家分享一下
想必大家看过吧
整体二分就是这么一个过程
很多询问与修改(不同颜色的球) 通过很多层筛选(递归二分) 最终到了自己颜色的那个区间(找到了答案)
而普通的二分可以理解为我们把球一个一个丢进去,等那个球找到了颜色再丢下一个,比把球一起倒进去慢了很多
进一步观察,我们可以抽象地把图理解为
[例题]
给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。
对于每一个询问指令,你必须输出正确的回答。
输入格式:
第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。
第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t
-
Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。
-
C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。
输出格式:
对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。
输入样例#1:
5 3 3 2 1 4 7 Q 1 4 3 C 2 6 Q 2 5 3
输出样例#1:
3 6
[具体做法]
int mid=(l+r)>>1;
for(int i=L;i<=R;i++){
if(q[i].op==1 && q[i].y<=mid) add(q[i].x,1);
if(q[i].op==2 && q[i].y<=mid) add(q[i].x,-1);
if(q[i].op==3) tmp[i]=quary(q[i].y)-quary(q[i].x-1);//这个区间比mid小的个数
}
我们这里要求对于每一个询问(op==3) 的区间中,小于mid的数有多少
所以op==1或2 且他们的值<mid 就对于询问有贡献,加入树状数组
在处理完tmp过后,要清空树状数组
for(int i=L;i<=R;i++){//清空树状数组
if(q[i].op==1 && q[i].y<=mid) add(q[i].x,-1);
if(q[i].op==2 && q[i].y<=mid) add(q[i].x,1);
}
接下来,就要把这些询问和修改分成两段
int cnt=0;
for(int i=L;i<=R;i++){
if(q[i].op==3){
if(q[i].cur+tmp[i]>=q[i].k) mark[i]=1,cnt++;//放在左边
else q[i].cur+=tmp[i],mark[i]=0;
}
else{
if(q[i].y<=mid) mark[i]=1,cnt++;
else mark[i]=0;
}
}
q[i].cur 表示已经有多少个数比这个Mid询问小
对于询问,只要q[i].cur+比它当前Mid小的个数>=要查询的K
那么放在左边
对于操作,只要值小于Mid也放在左边,于是分成了两部分
这两部分再重复操作,就一直分下去了
#include<bits/stdc++.h>
#define N 500005
using namespace std;
int n,m,a[N],ans[N],tot,sign;
int tmp[N],c[N],mark[N];
struct Query{int x,y,op,cur,k,id;}q[N],ret[N];
int read(){
int cnt=0;char ch=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))cnt=cnt*10+(ch-'0'),ch=getchar();
return cnt;
}
void add(int x,int val){
for(;x<=n;x+=x&-x) c[x]+=val;
}
int quary(int x){
int ans=0;
for(;x;x-=x&-x) ans+=c[x];
return ans;
}
void Solve(int L,int R,int l,int r){//L,R为询问的区间,lr用来二分
if(L>R) return;
if(l==r){
for(int i=L;i<=R;i++) ans[q[i].id]=l;
return;
}
int mid=(l+r)>>1;
for(int i=L;i<=R;i++){
if(q[i].op==1 && q[i].y<=mid) add(q[i].x,1);
if(q[i].op==2 && q[i].y<=mid) add(q[i].x,-1);
if(q[i].op==3) tmp[i]=quary(q[i].y)-quary(q[i].x-1);//这个区间比mid小的个数
}
for(int i=L;i<=R;i++){//清空树状数组
if(q[i].op==1 && q[i].y<=mid) add(q[i].x,-1);
if(q[i].op==2 && q[i].y<=mid) add(q[i].x,1);
}
int cnt=0;
for(int i=L;i<=R;i++){
if(q[i].op==3){
if(q[i].cur+tmp[i]>=q[i].k) mark[i]=1,cnt++;//放在左边
else q[i].cur+=tmp[i],mark[i]=0;
}
else{
if(q[i].y<=mid) mark[i]=1,cnt++;
else mark[i]=0;
}
}
int l1=L,l2=L+cnt;
for(int i=L;i<=R;i++){
if(mark[i]) ret[l1++]=q[i];
else ret[l2++]=q[i];
}
for(int i=L;i<=R;i++) q[i]=ret[i];
Solve(L,l1-1,l,mid);
Solve(l1,l2-1,mid+1,r);
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++){
a[i]=read();
q[++tot].op=1,q[tot].x=i,q[tot].y=a[i];
}
while(m--){
char ch[3]; scanf("%s",ch);
if(ch[0]=='Q'){
int x=read(),y=read(),z=read();
q[++tot].op=3;
q[tot].x=x,q[tot].y=y;
q[tot].k=z,q[tot].id=++sign;
}
else{
int x=read(),y=read();
q[++tot].op=2,q[tot].x=x,q[tot].y=a[x];
q[++tot].op=1,q[tot].x=x,q[tot].y=y;
a[x]=y;
}
}
Solve(1,tot,0,1e9);
for(int i=1;i<=sign;i++)
printf("%d\n",ans[i]);
return 0;
}