植树方案[fake_2-SAT]

传送门

类似的奇偶约数问题,可以转化为图论来解决

本题有2-SAT的味道,又有二分图染色的味道

总之通过将束缚转化为图,求图中连通块的个数

每个连通块有两种"染色"方案,根只有一种,答案就是2^(cnt-1)


#include<bits/stdc++.h>
#define N 100005
#define M N*2
#define LL long long
using namespace std;
int first[N],next[M],to[M],w[M],tot;
int n,q,id[N],flag,cnt; LL ans=1;
void add(int x,int y,int z){
	next[++tot]=first[x],first[x]=tot,to[tot]=y,w[tot]=z;
}
void dfs(int u){
	if(flag) return;
	if(id[u]==-1) id[u]=0;
	for(int i=first[u];i;i=next[i]){
		int t=to[i];
		if(id[t]==-1){
			if(w[i]==0) id[t]=id[u];
			else id[t]=id[u]^1;
			dfs(t);
		}
		else{
			if(id[t]==id[u] && w[i]==1) {flag=1; return;}
			if(id[t]!=id[u] && w[i]==0) {flag=1; return;}
		}
	}
}
int main(){
	scanf("%d%d",&n,&q);
	for(int i=1;i<n;i++){
		int x,y; scanf("%d%d",&x,&y);
	}
	for(int i=1;i<=q;i++){
		int x,y,z; scanf("%d%d%d",&x,&y,&z);
		add(x,y,z),add(y,x,z);
	}
	memset(id,-1,sizeof(id));
	for(int i=1;i<=n;i++)
		if(id[i]==-1){
			dfs(i); 
			if(flag) {printf("0"); return 0;}
			else cnt++;
		}
	for(int i=1;i<cnt;i++) ans=(LL)(ans*2)%998244353;
	printf("%d",ans); return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值