类似的奇偶约数问题,可以转化为图论来解决
本题有2-SAT的味道,又有二分图染色的味道
总之通过将束缚转化为图,求图中连通块的个数
每个连通块有两种"染色"方案,根只有一种,答案就是2^(cnt-1)
#include<bits/stdc++.h>
#define N 100005
#define M N*2
#define LL long long
using namespace std;
int first[N],next[M],to[M],w[M],tot;
int n,q,id[N],flag,cnt; LL ans=1;
void add(int x,int y,int z){
next[++tot]=first[x],first[x]=tot,to[tot]=y,w[tot]=z;
}
void dfs(int u){
if(flag) return;
if(id[u]==-1) id[u]=0;
for(int i=first[u];i;i=next[i]){
int t=to[i];
if(id[t]==-1){
if(w[i]==0) id[t]=id[u];
else id[t]=id[u]^1;
dfs(t);
}
else{
if(id[t]==id[u] && w[i]==1) {flag=1; return;}
if(id[t]!=id[u] && w[i]==0) {flag=1; return;}
}
}
}
int main(){
scanf("%d%d",&n,&q);
for(int i=1;i<n;i++){
int x,y; scanf("%d%d",&x,&y);
}
for(int i=1;i<=q;i++){
int x,y,z; scanf("%d%d%d",&x,&y,&z);
add(x,y,z),add(y,x,z);
}
memset(id,-1,sizeof(id));
for(int i=1;i<=n;i++)
if(id[i]==-1){
dfs(i);
if(flag) {printf("0"); return 0;}
else cnt++;
}
for(int i=1;i<cnt;i++) ans=(LL)(ans*2)%998244353;
printf("%d",ans); return 0;
}