[NOI2011]阿狸的打字机 [AC自动机+树状数组]

传送门

考虑暴力, 就是将所有为y的fail并且以x结束的点

如果在fail树上考虑呢?

我们发现y到根经过的所有点, 对应到自动机上就是将所有y的fail节点跳一边

如果我们将它们+1, 然后查询子树和, 就相当于在自动机上, 能跳到x的点的个数

我们在fail树上dfs, 显然到了结束的节点就将某一个子串遍历完了, 如果我们把这个子串到根的路径都加1, 那么x在fail树上的子树和

就是x的答案.

然后dfs序+树状数组就可以了


#include<bits/stdc++.h>
#define N 200050
using namespace std;
char s[N];
int n,tot,num,pos[N],ans[N];
int x[N],y[N];
vector<pair<int, int> > v[N];
int ch[N][26], fa[N], fail[N], p[N];
vector<int> son[N]; 
int first[N], nxt[N], to[N], ret;
void add(int x,int y){ nxt[++ret] = first[x], first[x] = ret, to[ret] = y;}
int st[N],ed[N],sign;
int c[N]; 
void Modify(int x,int val){ for(;x<=sign;x+=x&-x) c[x] += val;}
int Quary(int x){int ans=0; for(;x;x-=x&-x) ans += c[x]; return ans;}
void Build(){
	queue<int> q;
	for(int i=0;i<26;i++)
		if(ch[0][i]) q.push(ch[0][i]);
	while(!q.empty()){
		int x = q.front(); q.pop();
		for(int i=0;i<26;i++){
			int j = fail[x];
			if(ch[x][i]){ fail[ch[x][i]] = ch[j][i]; q.push(ch[x][i]);}
			else ch[x][i] = ch[j][i];
		}
	}
}
void dfs(int u){
	st[u] = ++sign;
	for(int i=first[u];i;i=nxt[i]){
		int t=to[i]; dfs(t);
	} ed[u] = sign;
}
void calc(int u){
	Modify(st[u], 1);
	int Siz = v[pos[u]].size();
	if(Siz){ 
		for(int i=0;i<Siz;i++){ 
			int x = v[pos[u]][i].first, id = v[pos[u]][i].second;
			ans[id] = Quary(ed[p[x]]) - Quary(st[p[x]]-1);
		} 
	}
	for(int i=0;i<son[u].size();i++){
		int t=son[u][i]; calc(t);
	} Modify(st[u],-1);
}
int main(){
	scanf("%s%d",s,&n);
	int len = strlen(s), now = 0;
	for(int i=0;i<len;i++){
		if(s[i] >= 'a' && s[i] <= 'z'){
			int x = s[i] - 'a';
			if(!ch[now][x]) ch[now][x] = ++tot, fa[ch[now][x]] = now;
			now = ch[now][x];
		}
		if(s[i] == 'P') pos[now] = ++num, p[num] = now;
		if(s[i] == 'B') now = fa[now];
	} 
	for(int i=0;i<=tot;i++)
		for(int j=0;j<26;j++)
			if(ch[i][j]) son[i].push_back(ch[i][j]);
	Build();
	for(int i=1;i<=tot;i++) add(fail[i], i);
	dfs(0);
	for(int i=1;i<=n;i++){
		scanf("%d%d",&x[i],&y[i]);
		v[y[i]].push_back(make_pair(x[i],i));
	} calc(0);
	for(int i=1;i<=n;i++) printf("%d\n",ans[i]); return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值