考虑暴力, 就是将所有为y的fail并且以x结束的点
如果在fail树上考虑呢?
我们发现y到根经过的所有点, 对应到自动机上就是将所有y的fail节点跳一边
如果我们将它们+1, 然后查询子树和, 就相当于在自动机上, 能跳到x的点的个数
我们在fail树上dfs, 显然到了结束的节点就将某一个子串遍历完了, 如果我们把这个子串到根的路径都加1, 那么x在fail树上的子树和
就是x的答案.
然后dfs序+树状数组就可以了
#include<bits/stdc++.h>
#define N 200050
using namespace std;
char s[N];
int n,tot,num,pos[N],ans[N];
int x[N],y[N];
vector<pair<int, int> > v[N];
int ch[N][26], fa[N], fail[N], p[N];
vector<int> son[N];
int first[N], nxt[N], to[N], ret;
void add(int x,int y){ nxt[++ret] = first[x], first[x] = ret, to[ret] = y;}
int st[N],ed[N],sign;
int c[N];
void Modify(int x,int val){ for(;x<=sign;x+=x&-x) c[x] += val;}
int Quary(int x){int ans=0; for(;x;x-=x&-x) ans += c[x]; return ans;}
void Build(){
queue<int> q;
for(int i=0;i<26;i++)
if(ch[0][i]) q.push(ch[0][i]);
while(!q.empty()){
int x = q.front(); q.pop();
for(int i=0;i<26;i++){
int j = fail[x];
if(ch[x][i]){ fail[ch[x][i]] = ch[j][i]; q.push(ch[x][i]);}
else ch[x][i] = ch[j][i];
}
}
}
void dfs(int u){
st[u] = ++sign;
for(int i=first[u];i;i=nxt[i]){
int t=to[i]; dfs(t);
} ed[u] = sign;
}
void calc(int u){
Modify(st[u], 1);
int Siz = v[pos[u]].size();
if(Siz){
for(int i=0;i<Siz;i++){
int x = v[pos[u]][i].first, id = v[pos[u]][i].second;
ans[id] = Quary(ed[p[x]]) - Quary(st[p[x]]-1);
}
}
for(int i=0;i<son[u].size();i++){
int t=son[u][i]; calc(t);
} Modify(st[u],-1);
}
int main(){
scanf("%s%d",s,&n);
int len = strlen(s), now = 0;
for(int i=0;i<len;i++){
if(s[i] >= 'a' && s[i] <= 'z'){
int x = s[i] - 'a';
if(!ch[now][x]) ch[now][x] = ++tot, fa[ch[now][x]] = now;
now = ch[now][x];
}
if(s[i] == 'P') pos[now] = ++num, p[num] = now;
if(s[i] == 'B') now = fa[now];
}
for(int i=0;i<=tot;i++)
for(int j=0;j<26;j++)
if(ch[i][j]) son[i].push_back(ch[i][j]);
Build();
for(int i=1;i<=tot;i++) add(fail[i], i);
dfs(0);
for(int i=1;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
v[y[i]].push_back(make_pair(x[i],i));
} calc(0);
for(int i=1;i<=n;i++) printf("%d\n",ans[i]); return 0;
}