通过饱和法获取有限局部理论公理化
1. 引言
在数学和计算机科学中,许多问题可归结为证明背景理论中文字合取式的可满足性。因此,识别在理论扩展和组合中能高效准确进行推理的情况至关重要。这涉及两个关键问题:
- 找到在不损失完备性的前提下缩小搜索空间的方法。
- 实现模块化或分层推理。
为解决这些问题,引入了局部理论扩展的概念,这类扩展存在完备的实例化方案,且支持分层和模块化推理。然而,局部性是理论公理化的属性,而非理论本身的属性。所以,识别子句集的局部性并获取局部公理化(例如将非局部子句集转换为局部子句集)十分重要。
已有研究建立了(顺序)局部性与有序(超)归结下饱和之间的联系,可通过饱和从非局部公理化得到局部公理化。但饱和过程生成的子句集规模常很大,甚至可能不终止。本文的主要贡献如下:
- 使用约束子句来获取可能无限子句集的有限表示。
- 采用适用于约束子句的可靠且完备的有序归结和叠加演算。在经典饱和过程可能不终止的情况下,约束子句能为可能无限的子句集提供有限表示。
- 证明了在特定类型的约束子句中,演算中的饱和与顺序局部性之间存在联系。
- 指出了该方法的局限性。
此外,还能证明理论组合的局部性,或为理论组合获取局部公理化。本文还简要讨论了研究成果与现有工作的关系。
2. 预备知识
2.1 一般定义
为简洁起见,主要考虑单排序签名,多排序情况类似。
- 项和子句 :
- 设 $\Pi = (\Sigma, Pred)$ 是一个签名,其中 $\Sigma$ 是固定元数的函数符号
订阅专栏 解锁全文
39

被折叠的 条评论
为什么被折叠?



