💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
在探讨二维空间内的电势分布与电场特性时,我们关注了一个特别的物理模型:即在等边三角形每一顶点精准安置了三个相同大小的电荷。这一配置引发了深具启发性的电磁现象,为理解复电费米结构及电动力学基本原理提供了直观的视觉示例。
对于该场景下电场线的可视化描绘,要求我们细致考虑流线的数量选择与它们的起始排布策略。这是至关重要的一步,因为不恰当的设置可能导致视觉解释的误导。正确实施这一步骤,能够确保所呈现的电场线图不仅美观,而且信息丰富,直观反映了电场的强度变化趋势。
特别地,理论与实践均证实,电场线的密集程度直接映射了电场强度的强弱。换言之,电场越强劲的地方,电场线越是密集交织,仿佛自然界的微缩地图,精准标绘了力量的脉络与分布。因此,在构建这类图形模型时,通过恰当地调控流线布局,我们实际上是在用一种艺术化的语言,讲述着物理世界中电场力线如何优雅地编织空间的故事,既是对科学原理的阐述,也是对自然界美学的一次致敬。
在二维空间中,考虑在一个等边三角形的三个顶点上各放置一个等量的电荷,这种情况下的电势分布、电场线形态以及等势面特性是非常有趣的物理问题。以下是对这一场景的分析概述:
等量电荷的配置
假设这三个电荷均为正电荷(或均为负电荷,结果在对称性上是相似的,仅电场方向相反),且电荷量相等。等边三角形的几何对称性将极大地影响电势和电场的分布。
电势
电势是电场强度沿路径积分的结果,同时它也是空间位置的函数。在三角形中心的电势由于对称性将是常数,因为从这一点到任一顶点的电势贡献相等且相反,相互抵消。离开中心越远,电势的变化将根据距离和电荷分布的具体情况而定。电势的分布可以通过解决泊松方程来确定,对于三个固定电荷的情况,可以直接使用库仑定律和电势叠加原理计算。
电场线
电场线起始于正电荷,终止于负电荷,且电场线的密度反映电场强度的大小。在这个设置中,每个电荷都会在其周围产生径向向外(若为正电荷)或向内(若为负电荷)的电场线。在三角形内部,电场线会由于三个电荷的相互作用而形成复杂的图案,尤其是在接近三角形边界的地方,电场线会表现出显著的扭曲和汇聚现象,反映出电场的非均匀性。在某些特定的方向上,比如沿着从一个顶点到相对边中点的直线,电场可能部分或完全相互抵消,形成电场较弱或为零的区域。
等势面
等势面是空间中电势相等的点所构成的连续曲面。在本例中,等势面会呈现出与电场线垂直的特征,并围绕电荷分布展现出复杂的几何形状。等势面在三角形中心是对称且密集的,因为这里是电势变化最小的区域。随着远离三角形顶点向外延伸,等势面的间隔通常会变得更加规则,反映出电势随距离增加而更加平缓地变化。在三角形顶点附近,等势面将紧密跟随电荷的对称布局,而在三角形平面之外,等势面将逐渐趋于平面,远离电荷源。
综上所述,通过研究等边三角形顶点放置等量电荷所产生的电场线和等势面,我们可以深入理解电荷分布对电场和电势空间结构的影响,这对于电磁学理论和工程应用都有着重要的意义。
📚2 运行结果
部分代码:
clear all
close all
clc
tic
% ========================================================================
% INPUTS
% ========================================================================
% Number of grid point [N = 10001]
N = 1001;
% Charge Q = [10, 0, 0, 0, 0]
Q = [10, 10, 10, 0, 0] .* 1e-6;
% Radius of circular charged conductor;
a = 0.1;
% X & Y components of position of charges [0, 0, 0, 0, 0]
xC = [0, 0, sqrt(2/3), 0, 0];
yC = [-0.5, +0.5 0, 0, 0];
% constants
eps0 = 8.854e-12;
kC = 1/(4*pi*eps0);
% Dimensions of region / saturation levels
% [dimensions of region -2 to 2 / minR = 1e-6 / Esat = 1e6 / Vsat = 1e6]
minX = -2;
maxX = 2;
minY = -2;
maxY = 2;
minR = 1e-6;
minRx = 1e-6;
minRy = 1e-6;
Vsat = kC * max(abs(Q)) / a;
Esat = kC * max(abs(Q)) / a^2;
% =======================================================================
% SETUP
% =======================================================================
% Fields
V = zeros(N,N);
Ex = zeros(N,N); Ey = zeros(N,N);
% [2D] region
x = linspace(minX,maxX,N);
y = linspace(minY, maxY,N);
% Color of charged object + red / - black
col1 = [1 0 0];
col2 = [0 0 0];
% Grid positions
[xG, yG] = meshgrid(x,y);
% =======================================================================
% CALCULATION: POTENTIAL & ELECTRIC FIELD
% =======================================================================
for n = 1 : 3
Rx = xG - xC(n);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许冬保.两个不等量异种点电荷静电场的研究及其应用[J].物理教师, 2021, 42(11):4.
[2]徐维祯,林国华,李鹏飞.利用Canvas描绘多个点电荷的电场线和等势面[J].物理通报, 2016(12):3.DOI:CNKI:SUN:WLTB.0.2016-12-014.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取