【多变量输入单步预测】基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

          💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention的风电功率预测研究

一、研究背景与意义

二、算法介绍

三、模型构建与优化

四、实验结果与分析

五、结论与展望

总结

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention的风电功率预测研究

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构中占据重要地位。然而,风电功率的随机性和波动性给电力系统的稳定运行带来了挑战。准确的风电功率预测对于提高电网的安全性、稳定性和经济性具有重要意义。因此,研究基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention模型的风电功率预测方法具有重要的理论价值和实际应用前景。

二、算法介绍
  1. 鲸鱼优化算法(WOA)
    • 概述:鲸鱼优化算法是一种模拟鲸鱼捕食行为的群体智能优化算法,由澳大利亚格里菲斯大学的Mirjalili等于2016年提出。WOA通过模拟鲸鱼的包围猎物、螺旋攻击猎物和随机搜索猎物等行为,实现对全局最优解的搜索。该算法具有收敛速度快、全局搜索能力强、算法简单易实现等优点。
    • 核心机制:包括搜索觅食、收缩包围和螺旋更新位置三个阶段。鲸鱼的位置更新策略通过随机数p的取值和系数向量A的模来决定,逐步向最优解靠拢。
  2. CNN(卷积神经网络)
    • 作用:CNN特别适合于处理具有空间结构的数据。在风电功率预测中,CNN可以提取风速等时间序列数据的局部特征,为后续的预测提供重要信息。
  3. BiLSTM(双向长短时记忆网络)
    • 作用:BiLSTM是RNN的一种变体,能够同时处理输入序列的正向和反向信息,从而捕捉到序列中的双向依赖关系。在风电功率预测中,BiLSTM能够学习风速等时间序列数据中的长期依赖关系,提高预测的准确性。
  4. Attention机制
    • 作用:Attention机制能够识别不同时间步长特征的权重,突出重要的特征信息。在风电功率预测中,Attention机制可以帮助模型识别影响预测结果的关键时间段,进一步提高预测的精度。
三、模型构建与优化

基于WOA优化CNN-BiLSTM-Attention的风电功率预测模型主要包含以下几个部分:

  1. 输入层:输入风速等时间序列数据,并进行预处理。
  2. CNN层:利用CNN提取时间序列数据的局部特征。
  3. BiLSTM层:利用BiLSTM学习时间序列数据的双向长时依赖关系。
  4. Attention层:利用Attention机制识别不同时间步长特征的权重。
  5. 输出层:输出预测的风电功率值。

WOA算法被用于优化CNN-BiLSTM-Attention模型的参数,以提高模型的预测精度。优化过程包括初始化鲸鱼群体、计算适应度值、更新候选解(即模型参数)等步骤,直到满足停止条件(如达到最大迭代次数或预测误差小于预设阈值)。

四、实验结果与分析

虽然无法直接给出具体的实验结果,但基于WOA优化CNN-BiLSTM-Attention模型的风电功率预测方法通常会在预测精度、稳定性等方面表现出优于传统方法的性能。这主要得益于WOA的全局搜索能力和CNN-BiLSTM-Attention模型的深度学习特性。

五、结论与展望

基于鲸鱼优化算法优化CNN-BiLSTM-Attention模型的风电功率预测方法是一种有效且具有潜力的预测方法。未来研究可以进一步探索模型的泛化能力和鲁棒性,以及将该模型应用于其他可再生能源预测领域的可能性。同时,也可以考虑将其他优化算法与深度学习模型相结合,以进一步提高预测精度和效率。

总结

本文介绍了基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention模型的风电功率预测研究。该方法结合了优化算法、深度学习技术和风电功率预测领域的优势,具有较高的预测精度和实际应用价值。未来研究可进一步探索该模型的优化和应用拓展。

📚2 运行结果

采用前10个样本的所有特征,去预测下一个样本的发电功率。

部分代码:


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    bilstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值