💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention的风电功率预测研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention的风电功率预测研究
一、研究背景与意义
风能作为一种清洁、可再生的能源,在全球能源结构中占据重要地位。然而,风电功率的随机性和波动性给电力系统的稳定运行带来了挑战。准确的风电功率预测对于提高电网的安全性、稳定性和经济性具有重要意义。因此,研究基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention模型的风电功率预测方法具有重要的理论价值和实际应用前景。
二、算法介绍
- 鲸鱼优化算法(WOA)
- 概述:鲸鱼优化算法是一种模拟鲸鱼捕食行为的群体智能优化算法,由澳大利亚格里菲斯大学的Mirjalili等于2016年提出。WOA通过模拟鲸鱼的包围猎物、螺旋攻击猎物和随机搜索猎物等行为,实现对全局最优解的搜索。该算法具有收敛速度快、全局搜索能力强、算法简单易实现等优点。
- 核心机制:包括搜索觅食、收缩包围和螺旋更新位置三个阶段。鲸鱼的位置更新策略通过随机数p的取值和系数向量A的模来决定,逐步向最优解靠拢。
- CNN(卷积神经网络)
- 作用:CNN特别适合于处理具有空间结构的数据。在风电功率预测中,CNN可以提取风速等时间序列数据的局部特征,为后续的预测提供重要信息。
- BiLSTM(双向长短时记忆网络)
- 作用:BiLSTM是RNN的一种变体,能够同时处理输入序列的正向和反向信息,从而捕捉到序列中的双向依赖关系。在风电功率预测中,BiLSTM能够学习风速等时间序列数据中的长期依赖关系,提高预测的准确性。
- Attention机制
- 作用:Attention机制能够识别不同时间步长特征的权重,突出重要的特征信息。在风电功率预测中,Attention机制可以帮助模型识别影响预测结果的关键时间段,进一步提高预测的精度。
三、模型构建与优化
基于WOA优化CNN-BiLSTM-Attention的风电功率预测模型主要包含以下几个部分:
- 输入层:输入风速等时间序列数据,并进行预处理。
- CNN层:利用CNN提取时间序列数据的局部特征。
- BiLSTM层:利用BiLSTM学习时间序列数据的双向长时依赖关系。
- Attention层:利用Attention机制识别不同时间步长特征的权重。
- 输出层:输出预测的风电功率值。
WOA算法被用于优化CNN-BiLSTM-Attention模型的参数,以提高模型的预测精度。优化过程包括初始化鲸鱼群体、计算适应度值、更新候选解(即模型参数)等步骤,直到满足停止条件(如达到最大迭代次数或预测误差小于预设阈值)。
四、实验结果与分析
虽然无法直接给出具体的实验结果,但基于WOA优化CNN-BiLSTM-Attention模型的风电功率预测方法通常会在预测精度、稳定性等方面表现出优于传统方法的性能。这主要得益于WOA的全局搜索能力和CNN-BiLSTM-Attention模型的深度学习特性。
五、结论与展望
基于鲸鱼优化算法优化CNN-BiLSTM-Attention模型的风电功率预测方法是一种有效且具有潜力的预测方法。未来研究可以进一步探索模型的泛化能力和鲁棒性,以及将该模型应用于其他可再生能源预测领域的可能性。同时,也可以考虑将其他优化算法与深度学习模型相结合,以进一步提高预测精度和效率。
总结
本文介绍了基于鲸鱼优化算法(WOA)优化CNN-BiLSTM-Attention模型的风电功率预测研究。该方法结合了优化算法、深度学习技术和风电功率预测领域的优势,具有较高的预测精度和实际应用价值。未来研究可进一步探索该模型的优化和应用拓展。
📚2 运行结果
采用前10个样本的所有特征,去预测下一个样本的发电功率。
部分代码:
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
bilstmLayer(25,'Outputmode','last','name','hidden1')
selfAttentionLayer(1,2) %创建一个单头,2个键和查询通道的自注意力层
dropoutLayer(0.1,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(1,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取