目录
1.理论概述
WOA(Whale Optimization Algorithm)是一种基于自然界中鲸鱼觅食行为的优化算法,由伊朗的Mirjalili等人于2016年提出。该算法具有灵感来自于鲸鱼在寻找食物的过程中所表现出的各种行为特征,如环绕、向上游、向下潜等。这些行为可以帮助鲸鱼更有效地找到食物,同样地,WOA算法也可以在求解许多优化问题时发挥其优势。
鲸鱼优化算法的主要思想是模拟鲸鱼的觅食行为。在觅食过程中,鲸鱼会通过感知周围环境中的声音、味道等信息来判断食物的方向和距离,并采取相应的游动行为。同样地,WOA算法通过模拟鲸鱼的这些行为来搜索优化问题的解空间。
2.WOA鲸鱼优化算法的理论知识
鲸鱼优化算法主要包括三个步骤,即包围捕食,气泡攻击以及寻觅食物阶段。
2.1包围捕食
在算法的初始阶段,座头鲸并不能完全确定食物所在的具体位置,他们都是通过群体合作来获得食物的位置信息,因此,距离食物最近的鲸鱼相当于当前的一个局部最优解,其他鲸鱼个体都会朝这个位置靠近,从而逐步包围食物,因此使用下列的数学模型表示:
2.2气泡攻击
鲸鱼捕食的过程中使用气泡进行攻击,通过收缩包围和螺旋更新位置模拟鲸鱼捕食吐出气泡的行为,从而达到鲸鱼局部寻优的目的。当座头鲸发现食物之后,若概率小于0.5,依然采用传统的方式进行更新,反之,则会计算个体与当前最优鲸鱼的距离,然后再以螺旋方式游走,因此在进行食物的搜索时候,螺旋游走方式的数学模型如下:
2.3寻觅食物阶段
为了更好的保证搜索和收敛,鲸鱼个体还可以进行随机搜索食物,当|A|>1的时候,随机选择的座头鲸的个体会引导其他座头鲸向其靠拢,反之当前座头鲸的位置仅仅是一个局部最优的位置,这种方式保证了座头鲸个体能够进行全局搜索,获得全局最优解,其数学模型表示如下:
3.MATLAB程序
% The Whale Optimization Algorithm
function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% 初始化领导者的位置向量和得分
Leader_pos=zeros(1,dim);
Leader_score=inf; % 对于最大化问题,将其更改为-inf
% 初始化搜索代理的位置
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
t=0;% Loop counter
% 主循环
while t<Max_iter
for i=1:size(Positions,1)
% 将超出搜索空间边界的搜索代理返回回来
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% 计算每个搜索代理的目标函数值
fitness=fobj(Positions(i,:));
% 更新领导者
if fitness<Leader_score % 对于最大化问题,将其更改为>
Leader_score=fitness; % 更新领导者得分
Leader_pos=Positions(i,:);
end
end
a=2-t*((2)/Max_iter); % a 从2到0线性减小
% a2 从-1到-2线性减小
a2=-1+t*((-1)/Max_iter);
% 更新搜索代理的位置
for i=1:size(Positions,1)
r1=rand(); % r1 是 [0,1] 中的一个随机数
r2=rand(); % r2是 [0,1] 中的一个随机数
A=2*a*r1-a;
C=2*r2;
b=1;
l=(a2-1)*rand+1;
p = rand();
% 从当前搜索代理的位置和领导者位置中选择一个随机位置 X_rand,计算公式 (2.7) 中的 D。根据公式 (2.8) 和 (2.9),更新搜索代理的位置。如果更新后的位置超出了搜索空间的边界,则将其返回到边界上。最后,根据目标函数计算新的适应度值,并更新领导者的位置和得分。如果达到最大迭代次数,则退出循环并返回领导者的得分、位置和收敛曲线。
for j=1:size(Positions,2)
if p<0.5
if abs(A)>=1
rand_leader_index = floor(SearchAgents_no*rand()+1);
X_rand = Positions(rand_leader_index, :);
D_X_rand=abs(C*X_rand(j)-Positions(i,j));
Positions(i,j)=X_rand(j)-A*D_X_rand;
elseif abs(A)<1
D_Leader=abs(C*Leader_pos(j)-Positions(i,j));
Positions(i,j)=Leader_pos(j)-A*D_Leader;
end
elseif p>=0.5
distance2Leader=abs(Leader_pos(j)-Positions(i,j));
% Eq. (2.5)
Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);
end
end
end
t=t+1;
Convergence_curve(t)=Leader_score;
[t Leader_score]
end
up2226
设计的目标函数如下:
% F1
function o = F1(x)
o=sum(x.^2);
end
% F2
function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end
% F3
function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
o=o+sum(x(1:i))^2;
end
end
% F4
function o = F4(x)
o=max(abs(x));
end
% F5
function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end
% F6
function o = F6(x)
o=sum(abs((x+.5)).^2);
end
% F7
function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end
% F8
function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end
% F9
function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end
% F10
function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end
% F11
function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end
% F12
function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end
% F13
function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end
% F14
function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
for j=1:25
bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end
% F15
function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end
% F16
function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end
% F17
function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end
% F18
function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
(30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end
% F19
function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F20
function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F21
function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:5
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F22
function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:7
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F23
function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:10
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end