【负荷预测】基于LSTM-Attention的负荷预测研究(Python代码实现)

        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、LSTM与Attention机制的结合

1. LSTM网络

2. Attention机制

三、LSTM-Attention模型在负荷预测中的应用

1. 模型构建

2. 模型训练与优化

3. 实验与结果分析

四、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于LSTM-Attention的负荷预测研究是一个结合了长短期记忆网络(LSTM)和注意力机制(Attention)的深度学习模型,旨在提高负荷预测的准确性和效率。以下是对该研究的详细分析:

一、研究背景与意义

负荷预测是电力系统运行和市场规划的关键前提,其准确性对于保证电力系统安全稳定运行、降低发电成本、提升经济效应具有重要意义。随着电力系统智能化的发展,分布式能源的渗透率逐渐提高,电动汽车等可调控柔性负荷不断增多,使得电网负荷的随机性逐步增强,为负荷的准确预测带来了更大的挑战。因此,研究基于LSTM-Attention的负荷预测方法具有重要的现实意义。

二、LSTM与Attention机制的结合

1. LSTM网络

LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),通过引入门控机制(包括遗忘门、输入门和输出门)来解决传统RNN在处理长序列数据时容易出现的梯度消失和梯度爆炸问题。LSTM能够有效地捕捉序列数据中的长期依赖关系,因此在时间序列预测领域得到了广泛应用。

2. Attention机制

Attention机制模拟人脑注意力模型,通过计算输入序列中每个元素的权重,将注意力集中在重要的特征信息上,从而提高模型的预测准确率。在LSTM-Attention模型中,Attention机制被用来对LSTM的输出进行加权处理,以提取对预测结果更为关键的信息。

三、LSTM-Attention模型在负荷预测中的应用

1. 模型构建

基于LSTM-Attention的负荷预测模型通常包括以下几个部分:

  • 数据预处理:包括数据清洗、归一化等步骤,以消除噪声和量纲不一致的问题。
  • 特征选择:根据负荷序列的周期性(如日、周、年周期)和影响因素(如气象因素、电价等)进行特征选择,构建输入特征数据集。
  • LSTM网络层:用于捕捉负荷序列中的时序信息和长期依赖关系。
  • Attention层:对LSTM的输出进行加权处理,提取关键信息。
  • 输出层:根据Attention层的输出进行负荷预测。
2. 模型训练与优化

在模型训练过程中,通常采用均方误差(MSE)或平均绝对百分误差(MAPE)等作为损失函数,通过反向传播算法和优化器(如Adam)来更新模型参数。同时,为了避免过拟合和提高模型的泛化能力,还可以采用正则化、dropout等技术。

3. 实验与结果分析

通过实验对比不同模型(如单一LSTM模型、全特征输入的LSTM模型等)的预测精度和效率,可以验证基于LSTM-Attention的负荷预测模型的有效性。实验结果表明,该模型在不同季节和负荷水平下均表现出较高的预测精度和稳定性。

四、结论与展望

基于LSTM-Attention的负荷预测模型通过结合LSTM和Attention机制的优势,有效提高了负荷预测的准确性和效率。未来研究可以进一步探索不同注意力机制在负荷预测中的应用效果,以及与其他深度学习模型的融合策略,以进一步提升负荷预测的精度和鲁棒性。同时,随着大数据和人工智能技术的不断发展,基于LSTM-Attention的负荷预测模型将在电力系统中发挥更加重要的作用。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值